| 研究生: |
鄭武輝 Jheng, Wu-Huei |
|---|---|
| 論文名稱: |
側接磺酸基之交聯型醯亞胺/矽氧烷混成複合膜之製備與質子傳導特性研究 Preparation and Proton-conducting Properties of Crosslinked Imide/Siloxane Hybrid Membranes Grafted with Sulfonic Acid |
| 指導教授: |
郭炳林
Kuo, Ping-Ling |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2008 |
| 畢業學年度: | 96 |
| 語文別: | 英文 |
| 論文頁數: | 71 |
| 中文關鍵詞: | 質子傳導膜 、複合膜 、溶膠法 、聚(苯乙烯-馬來酸酐) 、聚矽氧烷 |
| 外文關鍵詞: | proton-conducting membrane, hybrid, polysiloxane, poly(styrene-co-maleic anhydride), sol-gel |
| 相關次數: | 點閱:73 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究利用具有磺酸基之monoamine(AESA-Na)與aminopropyltriethoxysilane(APTES)依等化學計量與帶有酸酐基之聚(苯乙烯-馬來酸酐)進行反應,而後經由溶膠法(sol-gel process)進行交聯,製備成一系列含有不同磺酸基之新型的醯亞胺/矽氧烷混成型質子傳導膜。研究結果顯示,此系列高分子質子傳導膜呈現均相結構並具有不錯的機械強度及氧化穩定性;由FT-IR及solid-state 13C 與 29Si NMR可確定本實驗成功製備出混成型質子傳導膜。在TGA結果方面其Td0.1約在420oC,顯示本系列薄膜具有良好的熱穩定性。此外,導入的無機聚矽氧烷增加與水之間的氫鍵作用力而促進結合水率(Bound water degree)的提升,使得複合膜的擁有低於商用品Nafion-117的甲醇穿透係數7.76×10-7 cm2s-1;且質子傳導度在完全水合狀態及30 oC可達0.0570 Scm-1,並可在60 oC下得到24.9 mW cm-2的最大功率均優於商用品Nafion-117 (質子傳導度 = 0.0541 Scm-1, 甲醇穿透係數= 2.51×10-6 cm2s-1 and 最大功率 = 21.1 mW cm-2)。
A new type of hybrid proton-conducting membranes with crosslinked polysiloxane framework was designed and prepared via sol-gel approach based on poly(styrene-co-maleic anhydride) modified with 2-aminoethanesulfonic acid sodium salt (AESA-Na) and Aminopropyltriethoxysilane (APTES). The number density of the pendant of sulfonate group was controlled by the ratio of AESA-Na to APTES. The resulted membranes own good mechanical strength. The structural characterizations of these membranes were confirmed by FT-IR and solid-state 13C and 29Si NMR spectra. All of these membranes exhibit a wholly amorphous morphology, perform adequate oxidative stability in Fenton’s reagent at 80 C for 1 h, and show two step of weight loss from 350 C, indicating their good thermal stability. The polysiloxane network is contributive to the increase in bound water degree and decrease in methanol permeability. The HPM sample with 1.3 theoretical mequiv SO3H/g reaches the proton conductivity of 0.0570 Scm-1 at 30 C and 0.125 Scm-1 at 70 C, respectively. Moreover, it also has low methanol permeability of 7.76×10-7 cm2s-1 at 30 C, and yield maximum power density of 24.9 mW cm-2 at 60 C. The HPM performed slightly better than Nafion 117 (proton conductivity = 0.0541 Scm-1, methanol permeability = 2.51×10-6 cm2s-1 and power density = 21.1 mW cm-2) under the same conditions.
Reference
1. Larminie, J.Dicks, A., Fuel cell systems explained, 2nd edition John Wiely & Sons Inc.: NY, USA, 2003.
2. Guo, X., Fang, J., Watari, T., Tanaka, K., Kita, H.Okamoto, K., Novel Sulfonated Polyimides as Polyelectrolytes for Fuel Cell Application. 2. Synthesis and Proton Conductivity of Polyimides from 9,9-Bis(4-aminophenyl)fluorene-2,7-disulfonic Acid. Macromolecules, 2002. 35(17): p. 6707-6713.
3. Ralph, T. R.Hogarth, M. P., Catalysis for low temperature fuel cells. Part I: The cathode challenges. Platinum Metals Rev., 2002. 46(1): p. 3-14.
4. Ralph, T. R.Hogarth, M. P., Catalysis for low temperature fuel cells. Part II: The anode challenges. Platinum Metals Rev., 2002. 46(1): p. 117-135.
5. Ralph, T. R.Hogarth, M. P., Catalysis for low temperature fuel cells. Part III: Challenges for the direct methanol fuel cell. Platinum Metals Rev., 2002. 46(1): p. 146-164.
6. Hsu, W. Y.Gierke, T. D., Ion transport and clustering in nafion perfluorinated membranes. J. Membr. Sci, 1983. 13(3): p. 307-326.
7. Rikukawa, M.Sanui, K., Proton-conducting polymer electrolyte membranes based on hydrocarbon polymers. Prog. Polym. Sci., 2000. 25(10): p. 1463-1502.
8. James, L.Andrew, D., Fuel Cell Explained John Wiley & Sons: England, 2003.
9. Yang, Z. Y.Rajendran, R. G., Copolymerization of Ethylene, Tetrafluoroethylene, and an Olefin-Containing Fluorosulfonyl Fluoride: Synthesis of High-Proton-Conductive Membranes for Fuel-Cell Applications. Angew. Chem. Int. Ed., 2005. 44(4): p. 564-567.
10. Ghassemi, H.McGrath, J. E., Synthesis and properties of new sulfonated poly(p-phenylene) derivatives for proton exchange membranes. I. Polymer, 2004. 45(17): p. 5847-5854.
11. Alberti, G., Casciola, M., Massinelli, L.Bauer, B., Polymeric proton conducting membranes for medium temperature fuel cells (110–160°C). J. Membr. Sci, 2001. 185(1): p. 73-81.
12. Carretta, N., Tricoli, V.Picchioni, F., Ionomeric membranes based on partially sulfonated poly(styrene): synthesis, proton conduction and methanol permeation. J. Membr. Sci, 2000. 166(2): p. 189-197.
13. Fu, Y. Z.Manthiram, A., Synthesis and characterization of sulfonated polysulfone membranes for direct methanol fuel cells J. Power Source, 2006. 157(1): p. 222-225.
14. Wang, F., Hickner, M., Kim, Y. S., Zawodzinski, T. A.McGrath, J. E., Direct polymerization of sulfonated poly(arylene ether sulfone) random (statistical) copolymers: candidates for new proton exchange membranes. J. Membr. Sci, 2002. 197(1-2): p. 231-242.
15. Miyatake, K., Shouji, E., Yamamoto, K.Tsuchida, E., Synthesis and Proton Conductivity of Highly Sulfonated Poly(thiophenylene). Macromolecules, 1997. 30(10): p. 2941-2946.
16. Fang, J., Guo, X., Harada, S., Watari, T., Tanaka, K., Kita, H.Okamoto, K., Novel Sulfonated Polyimides as Polyelectrolytes for Fuel Cell Application. 1. Synthesis, Proton Conductivity, and Water Stability of Polyimides from 4,4'-Diaminodiphenyl Ether-2,2'-disulfonic Acid. Macromolecules, 2002. 35(24): p. 9022-9028.
17. Nakajima, H., Nomura, S., Sugimoto, T., Nishikawa, S.Honma, I., High Temperature Proton Conducting Organic/Inorganic Nanohybrids for Polymer Electrolyte Membrane. J. Electrochem. Soc., 2002. 149(8): p. A953-A959.
18. Honma, I., Nomura, S.Nakajima, H., Protonic conducting organic/inorganic nanocomposites for polymer electrolyte membrane. J. Membr. Sci, 2001. 185(1): p. 83-94.
19. Honma, I., Takeda, Y.Bae, J. M., Protonic conducting properties of sol-gel derived organic/inorganic nanocomposite membranes doped with acidic functional molecules. Solid State Ionics, 1999. 120(1-4): p. 255-264.
20. Nakajima, H.Honma, I., Proton-conducting hybrid solid electrolytes for intermediate temperature fuel cells Solid State Ionics, 2002. 148(3-4): p. 607-610.
21. Staiti, P., Proton conductive membranes based on silicotungstic acid/silica and polybenzimidazole. Mater. Lett., 2001. 47(4-5): p. 241-246.
22. Staiti, P., Lufrano, F., Arico, A. S., Passalacqua, E.Antonucci, V., Sulfonated polybenzimidazole membranes — preparation and physico-chemical characterization. J. Membr. Sci, 2001. 188(1): p. 71-78.
23. Staiti, P.Minutoli, M., Influence of composition and acid treatment on proton conduction of composite polybenzimidazole membranes. J. Power Source, 2001. 94(1): p. 9-13.
24. Amarilla, J. M., Rojas, R. M., Rojo, J. M., Cubillo, M. J., Linares, A.Acosta, J. L., Antimonic acid and sulfonated polystyrene proton-conducting polymeric composites. Solid State Ionics, 2000. 127(1-2): p. 133-139.
25. Genova-Dimitrova, P., Baradie, B., Foscallo, D., Poinsignon, C.Sanchez, J. Y., Ionomeric membranes for proton exchange membrane fuel cell (PEMFC): sulfonated polysulfone associated with phosphatoantimonic acid. J. Membr. Sci, 2001. 185(1): p. 59-71.
26. Baradie, B., Poinsignon, C., Sanchez, J. Y., Piffard, Y., Vitter, G., Bestaoui, N., Foscallo, D., Denoyelle, A., Delabouglise, D.Vaujany, M., Thermostable ionomeric filled membrane for H2/O2 fuel cell. J. Power Source, 1998. 74(1): p. 8-16.
27. Poinsignon, C., Amodio, I., Foscallo, D.Sanchez, J. Y., Mater.Res. Soc. Symp. Proc., 2000. 548: p. 307.
28. Mikhailenko, S. D., Zaidi, S. M. J.Kaliaguine, S., Sulfonated polyether ether ketone based composite polymer electrolyte membranes. Catal. Today, 2001. 67(1-3): p. 225-236.
29. Nunes, S. P., Ruffmann, B., Rikowski, E., Vetter, S.Richau, K., Inorganic modification of proton conductive polymer membranes for direct methanol fuel cells J. Membr. Sci, 2002. 203(1-2): p. 215-225.
30. Zaidi, S. M. J., Mikhailenko, S. D., Robertson, G. P., Guiver, M. D.Kaliaguine, S., Proton conducting composite membranes from polyether ether ketone and heteropolyacids for fuel cell applications. J. Membr. Sci, 200. 173(1): p. 17-34.
31. Bonnet, B., Jones, D. J., Roziere, J., Tchicaya, L., Alberti, G., Casciola, M., Massinelli, L., Baner, B., Peraio, A.Ramunni, E., Hybrid organic-inorganic membranes for a medium temperature fuel cell. J. New Mater. Electrochem. Syst., 2000. 3(2): p. 87-92.
32. Popall, M.Du, X. M., Inorganic-organic copolymers as solid state ionic conductors with grafted anions. Electrochim. Acta., 1995. 40(13-14): p. 2305-2308.
33. Kreuer, K. D., On the development of proton conducting polymer membranes for hydrogen and methanol fuel cells J. Membr. Sci, 2001. 185(1): p. 29-39.
34. Hamnett, A., Mechanism and electrocatalysis in the direct methanol fuel cell. Catal. Today, 1997. 38(4): p. 445-457.
35. Hamnett, A.Kennedy, B. J., Bimetallic carbon supported anodes for the direct methanol-air fuel cell. Electrochim. Acta., 1998. 33(11): p. 1613-1617.
36. Parsons, R.Van der Noot, T., The oxidation of small organic molecules : A survey of recent fuel cell related research. J. Electroanal. Chem., 1988. 257(1-2): p. 9-45.
37. Batista, E. A., Malpass, G. R. P., Motheo, A. J.Iwasita, T., New insight into the pathways of methanol oxidation. Electrochem. Commun., 2003. 5(10): p. 843-846.
38. Gasteiger, H. A., Markovic, N., Jr, P. N. R.Cairns, E. J., Electro-oxidation of small organic molecules on well-characterized Pt-Ru alloys. Electrochim. Acta., 1994. 39(11-12): p. 1825-1832.
39. Iwasita, T., Electrocatalysis of methanol oxidation. Electrochim. Acta., 2002. 47(22-23): p. 3663-3674.
40. Franaszczuk, K.Jerzy Sobkowski, The influence of ruthenium adatoms on the oxidation of chemisorbed species of methanol on a platinum electrode by a radiochemical method. J. Electroanal. Chem., 1992. 327(1-2): p. 235-245.
41. Ticanelli, E., Beery, J. G., Paffett, M. T.Gottesfeld, S., An electrochemical, ellipsometric, and surface science investigation of the PtRu bulk alloy surface. J. Electroanal. Chem., 1989. 258(1): p. 61-77.
42. Hampson, N. A., Willars, M. J.McNicol, B. D., The methanol-air fuel cell: A selective review of methanol oxidation mechanisms at platinum electrodes in acid electrolytes”. J. Power Source, 1979. 4(3): p. 191-201.
43. Chen, C. Y.Yang, P., Performance of an air-breathing direct methanol fuel cell. J. Power Source, 2003. 123(1): p. 37-42.
44. Lim, C.Wang, C. Y., Development of high-power electrodes for a liquid-feed direct methanol fuel cell J. Power Source, 2003. 113(1): p. 145-150.
45. Schultz, T., Zhou, S.Sundmacher, K., Current Status of and Recent Developments in the Direct Methanol Fuel Cell Chem. Eng. Technol., 2001. 24(12): p. 1223-1233.
46. Smitha, B., Sridhar, S.Khan, A. A., Solid polymer electrolyte membranes for fuel cell applications—a review. J. Membr. Sci, 2005. 259(1-2): p. 10-26.
47. Heinzel, A.Barragán, V. M., A review of the state-of-the-art of the methanol crossover in direct methanol fuel cells. J. Power Source, 1999. 84(1): p. 70-74.
48. Schaffer, T., Tschinder, T., Hacker, V.Besenhard, J. O., Determination of methanol diffusion and electroosmotic drag coefficients in proton-exchange-membranes for DMFC. J. Power Source, 2006. 153(2): p. 210-216.
49. Fyfe, C., Solid State NMR for Chemists. CFC Press: Guelph, ON, 1983.
50. Komoroski, R. E., High Resolution NMR Spectroscopy of Synthetic Polymers in Bulk. VCH Publishers: Deerfield Beach, FL, 1986.
51. Gerstein, B.Dybowski, C., Transient Techniques in the NMR of Solids: An Introduction to Theory and Practice. Academic Press: New York, 1985.
52. Koenig, J., Spectroscopy of Polymers. American Chemistry Society: Washington, DC, 1992.
53. Mehring, M., High Resolution NMR in Solids. Springer-Verlag: Berlin, 1993.
54. Gray, F. M., Solid Polymer Electrolytes: Fundamentals and Technological Application VCH: New York, 1991.
55. Linford, R. G., Electrochemical Science and Technology of Polymers-2 Elsevier: New York, 1990.
56. Qian, X., Gu, N., Cheng, Z., Yang, X., Wang, E.Dong, S., Plasticizer effect on the ionic conductivity of PEO-based polymer electrolyte. Mater. Chem. Phys., 2002. 74(1): p. 98-103.
57. Kreuz, J. A., Endrey, A. L., Gay, F. P.Sroog, C. E., Studies of thermal cyclizations of polyamic acids and tertiary amine salts. J. Polym. Sci. Part A-1, 1966. 4(10): p. 2607-2616.
58. Ghosh, M. K.Mittal, K. L., Polyimides : Fundamentals and Applications Dekker: New York, 1996.
59. Kim, Y. J., Glass, T. E., Lyle, G. D.McGrath, J. E., Kinetic and mechanistic investigations of the formation of polyimides under homogeneous conditions. Macromolecules, 1993. 26(6): p. 1344-1358.
60. Ding, J., Chuy, C.Holdcroft, S., A Self-organized Network of Nanochannels Enhances Ion Conductivity through Polymer Films. Chem. Mater., 2001. 13(7): p. 2231-2233.
61. Erdemi, H., Bozkurt, A.Meyer, W. H., PAMPSA–IM based proton conducting polymer electrolytes. Synth. Met., 2004. 143(1): p. 133-138.
62. Lee, C., Iyer, S., Kwon, J.Han, H., Structure-property correlations of sulfonated polyimides. II. Effect of substituent groups on membrane properties. J. Polym. Sci. Part A, 2004. 42(14): p. 3621-3630.
63. Miyatake, K., Zhou, H.Watanabe, M., Proton Conductive Polyimide Electrolytes Containing Fluorenyl Groups: Synthesis, Properties, and Branching Effect. Macromolecules, 2004. 37(13): p. 4956-4960.
64. Genies, C., Mercier, R., Sillion, B., Cornet, N., Gebel, G.Pineri, M., Soluble sulfonated naphthalenic polyimides as materials for proton exchange membranes. Polymer, 2001. 42(2): p. 359-373.
65. Kreuer, K. D., Proton Conductivity: Materials and Applications. Chem. Mater., 1996. 8(3): p. 610-641.