簡易檢索 / 詳目顯示

研究生: 鄭宇軒
Cheng, Yu-Hsuan
論文名稱: 臺灣西南部二仁溪沉積剖面硫化鐵礦物學所揭露之多期成岩作用紀錄
Multiple diagenetic processes as revealed by iron-sulfide mineralogy in sediments from the Erhjen-chi section, southwestern Taiwan
指導教授: 江威德
Jiang, Wei-Teh
學位類別: 碩士
Master
系所名稱: 理學院 - 地球科學系
Department of Earth Sciences
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 152
中文關鍵詞: 硫複鐵礦菱硫鐵礦深埋成岩作用電子背向散射穿透式電子顯微鏡
外文關鍵詞: greigite, smythite, burial diagenesis, electron backscatter diffraction, transmission electron microscopy
相關次數: 點閱:99下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 臺灣西南部二仁溪剖面由西向東至古亭坑斷層涵蓋崎頂層底部及古亭坑層泥岩,分布有磁黃鐵礦-磁鐵礦帶、硫複鐵礦帶和硫複鐵礦-磁鐵礦帶,本研究使用掃瞄式電子顯微鏡(SEM)、電子背向散射繞射(EBSD)及高解析度穿透式電子顯微鏡 (HRTEM) 技術分析其硫化鐵礦物,以瞭解彼等微組構及成份特徵,探討可能形成過程。
    整體剖面沉積物基質均含有黃鐵礦細粒集合體,磁黃鐵礦僅出現於磁黃鐵礦-磁鐵礦帶,多為粒徑達數十微米之板狀晶體,且多呈現斷裂及部份氧化特徵,推測為碎屑源,僅於接近硫複鐵礦帶之處,見有尖板狀磁黃鐵礦,可能為成岩作用產物。硫複鐵礦帶和硫複鐵礦-磁鐵礦帶含有硫化鐵結核粒,依形態分為炭屑(植物化石)、生痕充填(生痕化石)與一般(準球狀)結核粒,硫複鐵礦為彼等主要組成,但硫複鐵礦-磁鐵礦帶於鄰近古亭坑斷層處,結核粒有黃鐵礦/白鐵礦化現象。炭屑及另二形態結核粒核心區塊分別由粒徑近百奈米之纖維狀和粒狀硫複鐵礦晶體集合體所構成,成份均符合硫Fe3S4,但EBSD訊號品質不足以辨識晶相;核心區塊外緣增生或再結晶緊密鑲嵌之較粗粒硫複鐵礦粒狀晶體,粒徑可達微米,可產生符合硫複鐵礦之EBSD繞射特徵。結核粒孔隙或外緣局部可見生長板狀晶簇,成份符合菱硫鐵礦(Fe9S11),且產生可鑑識為菱硫鐵礦之EBSD菊池帶。硫複鐵礦局部可與菱硫鐵礦微米晶體交錯生長,形成粒徑達數十微米之集合體。部分標本所含一般結核粒之鄰近基質和片狀矽酸鹽解理裂縫中,可見生長硫複鐵礦及菱硫鐵礦,結核粒內部之片狀矽酸鹽解理裂縫中,則另可見成份吻合四方硫鐵礦(FeS)之晶粒。
    HRTEM影像及繞射分析顯示炭屑結核粒核心纖維狀硫複鐵礦由約略平行排列之長柱狀晶體所組成,寬約數十至近百奈米,長軸沿<100>延展長度可達微米,晶體具有高密度{111}面缺陷,呈現沿<111>方向延伸之繞射條紋列,暗示緊密排列層堆疊或鐵佔位變化,此缺陷特徵亦見於生痕和一般結核粒核心緊密鑲嵌、粒徑近百奈米之粒狀晶體;長柱狀晶體集合體外緣生長近微米硫複鐵礦晶體,呈現幾無缺陷之中心區塊,具有立方緊密排列結構{111}之0.57奈米週期性;邊緣區域則具有1.71奈米緊密排列層與繞射週期長度,此種特徵亦可見於生痕和一般結核粒外緣增生之微米晶體。硫複鐵礦<110>及<211>晶帶軸繞射圖分別可見l ≠ 4n之00l和k + l ≠ 4n之0kl尖晶石結構禁制繞射點,暗示缺乏四重螺旋及鑽石滑移對稱性。一般結核粒外部鄰近處之片狀矽酸鹽解理裂隙充填粒徑數百奈米硫複鐵礦粒狀與菱硫鐵礦板狀晶體,兩者交錯生長,形成長達數微米之集合體,約略平行解理;結核粒內部片狀矽酸鹽解理裂隙除了相似地夾有硫複鐵礦及菱硫鐵礦,電子繞射證實另含有四方硫鐵礦。菱硫鐵礦板狀晶體呈現1.14 奈米週期長度,符合菱硫鐵礦菱體晶格(003)繞射與六方緊密排列層週期性位移特徵,局部可見與單一或數個符合硫複鐵礦0.57奈米層狀結構單元交錯,呈現l = 3n強度瀰散奇數階和明亮銳利偶數階00l繞射點。此外,結核粒孔隙板狀晶體亦有少見一例呈現磁黃鐵礦3.2C結構繞射特徵。
    古亭坑層硫化鐵結核粒中之細粒硫複鐵礦晶體之微組構和繞射特徵與臺灣西南海域沉積物早成岩硫複鐵礦相似,同樣具有奈米粒徑及富含{111}缺陷,且難以產生可資鑑定晶相之EBSD訊號;後期硫複鐵礦粒徑可達微米,具有相對低密度{111}缺陷和局部準菱硫鐵礦過渡性結構,可局部產生符合硫複鐵礦之EBSD菊池帶繞射特徵,且交錯或接續生長菱硫鐵礦板狀晶體,推測為深埋成岩作用產物。

    Electron microscopy techniques were used to determine compositional and structural properties and formation processes of iron-sulfide minerals in the Erhjen-chi section (Plio-Pleistocene Chiting Formation and Gutinkeng Mudstone), SW Taiwan. Greigite occurred as a main constituent of millimeter- to centimeter-sized plant-fossil, ichnofossil, and semi-spherical iron-sulfide nodules but was not observed in the sediment matrix of all studied samples. These nodules contained early-formed aggregates of granular or <100>-elongated nanocrystals of greigite (~Fe3S4) about 100 nm in size with the aggregates surrounded and nodule cavities partially filled by coarser grained greigite crystals up to 1 μm in size, locally intergrown with platy crystals with a composition of smythite (~Fe9S11). Iron-sulfide nodules were partially pyritized and marcasitized in the vicinity of the Gutingkeng Fault. HRTEM analyses showed that the greigite nanocrystals invariably exhibited a high density of {111} planar defects and intense diffraction streaks parallel to the greigite <111> directions, implying close packed layers irregularly interrupted by stacking mistakes and/or changes of iron occupancy. The coarser grained crystals of greigite were characterized by a defect-free domain epitaxially or topotaxially rimmed by areas showing layers with a 1.71-nm periodicity that might be hypothesized to include interstratified greigite-like 0.57 nm and smythite-like 1.14 nm units in the close packed layer sequence. Electron diffraction patterns of the platy crystals exhibited a 1.14-nm periodicity along the c* direction, consistent with the rhombohedral lattice of smythite with c = 3.42 nm. Local interstratification of smythite with single or multiple greigite-like 0.57 nm layers was observed as well. These results demonstrated two generations of greigite with distinct microstructures and late formation of smythite with complex transitional structures. The greigite-dominated nodules were largely modified by recrystallization of pre-existing early-diagenetic greigite and smythite neoformation.

    摘要 i Abstract iii 誌謝 vii 圖目錄 xii 表目錄 xv 第一章 緒論 1 1.1 硫複鐵礦 5 1.2 菱硫鐵礦 8 1.3 沉積物中磁黃鐵礦之特徵 13 1.4 研究目的 14 第二章 地質背景與樣本採集 15 2.1 地質背景 15 2.1.1 古亭坑層與崎頂層 16 2.1.2 泥火山特徵 19 2.2 台灣西南部磁性礦物研究 20 2.3 樣本採集 23 第三章 標本描述及研究方法 26 3.1 標本描述 26 3.2 實驗流程 33 3.3 樣本製備 35 3.4 X光粉末繞射 37 3.5 掃描式電子顯微鏡分析 37 3.5.1 背向散射電子影像(backscattered electron imaging, BEI) 37 3.5.2 X光能量分散光譜(energy-dispersive X-ray spectroscopy, EDS) 37 3.5.3 電子背向散射繞射(electron backscatter diffraction, EBSD) 38 3.6 穿透式電子顯微鏡分析 39 3.6.1 前瞻聚焦離子束系統試片製備 39 3.6.2 影像與電子繞射圖 39 第四章 結果 44 4.1 硫化鐵結核產狀與分類 44 4.2 結核X光繞射礦物組成 47 4.3 掃描式電子顯微鏡分析 52 4.3.1 晶相特徵 52 4.3.2 硫化鐵結核組織 53 4.3.3 基質硫化鐵礦物產狀 72 4.3.4 沉積碎屑礦物特徵 78 4.3.5 其他自生礦物特徵 81 4.3.6 電子顯微岩象綜整 86 4.4 穿透式電子顯微鏡分析 88 4.4.1 一般型結核 88 4.4.2 植物炭屑結核 95 4.4.3 生痕結核 101 4.4.4 片狀矽酸鹽解理裂隙硫化鐵礦物 105 4.4.5 超微組構特徵綜整 111 第五章 討論 112 5.1 磁黃鐵礦特徵與來源 112 5.2 成岩硫複鐵礦特徵 114 5.3 微米硫複鐵礦特徵與獨特性 115 5.4 結核硫複鐵礦—菱硫鐵礦多期成岩生成證據與模式 116 5.5 礦物區域性分布之隱示 119 5.6 硫複鐵礦與菱硫鐵礦成岩微組構變化之意義 121 第六章 結論 125 英文參考文獻 126 中文參考文獻 141 附錄一、各類型硫化鐵礦物定量光譜 144 附錄二、磁黃鐵礦定量結果 145 附錄三、硫複鐵礦定量結果 146 附錄四、菱硫鐵礦定量結果 149 附錄五、小滾水斷層富砷結核定量結果 152

    英文參考文獻:
    Amosov, R. A., Chuvikin.Ng, Bochek, L. I., & Epov, I. N. (1971). Hydrothermal smythite from the Darasun Gold Deposit. Doklady Akademii Nauk Sssr, 197(3), 116-119.
    Anderko, A., and Shuler, P.J. (1997) A computational approach to pre dicting the formation of iron sulfide species using stability diagrams. Computer & Geoscience, 23(6), 647-658
    Benning, L. G., Wilkin, R. T., & Barnes, H. L. (2000). Reaction pathways in the Fe-S system below 100 degrees C. Chemical Geology, 167(1-2), 25-51. doi:10.1016/s0009-2541(99)00198-9
    Berner, R. A., (1964). Iron Sulfides Formed from aqueous solution at low temperatures and atmospheric pressure. J. Geol., 72, 293-306.
    Berner, R. A., (1970). Sedimentary pyrite formation. Am. J. Sci., 268, 1-23.
    Berner, R. A., (1984). Sedimentary pyrite formation: An update. Geochim. Cosmochim. Acta 48, 605-615.
    Buseck, P. R., & Cowley, J. M. (1983). Modulated and intergrowth structures in minerals and electron microscope methods for their study. American Mineralogist, 68(1-2), 18-40.
    Canfield, D. E., Raiswell, R., Bottrell, S. H., (1992). The reactivity of sedimentary iron minerals toward sulfide. Am. J. Sci., 292, 659-683.
    Canfield, D. E., & Thamdrup, B. (2009). Towards a consistent classification scheme for geochemical environments, or, why we wish the term 'suboxic' would go away. Geobiology, 7(4), 385-392. doi:10.1111/j.1472-4669.2009.00214.x
    Chang, L., Roberts, A. P., Muxworthy, A. R., Tang, Y., Chen, Q., Rowan, C. J., . . . Pruner, P. (2007). Magnetic characteristics of synthetic pseudo-single-domain and multi-domain greigite (Fe(3)S(4)). Geophysical Research Letters, 34(24). doi:10.1029/2007gl032114
    Chang, L., Roberts, A. P., Rowan, C. J., Tang, Y., Pruner, P., Chen, Q. W., & Horng, C. S. (2009). Low-temperature magnetic properties of greigite (Fe3S4). Geochemistry Geophysics Geosystems, 10. doi:10.1029/2008gc002276
    Chang, L., Roberts, A. P., Tang, Y., Rainford, B. D., Muxworthy, A. R., & Chen, Q. W. (2008). Fundamental magnetic parameters from pure synthetic greigite (Fe3S4). Journal of Geophysical Research-Solid Earth, 113(B6). doi:10.1029/2007jb005502
    Chao, H. C., You, C. F., & Sun, C. H. (2010). Gases in Taiwan mud volcanoes: Chemical composition, methane carbon isotopes, and gas fluxes. Applied Geochemistry, 25(3), 428-436. doi:10.1016/j.apgeochem.2009.12.009
    Chen, S. C., Hsu, S. K., Wang, Y., Chung, S. H., Chen, P. C., Tsai, C. H., . . . Lee, Y. W. (2014). Distribution and characters of the mud diapirs and mud volcanoes off southwest Taiwan. Journal of Asian Earth Sciences, 92, 201-214. doi:10.1016/j.jseaes.2013.10.009
    Ching, K. E., Gourley, J. R., Lee, Y. H., Hsu, S. C., Chen, K. H., & Chen, C. L. (2016). Rapid deformation rates due to development of diapiric anticline in southwestern Taiwan from geodetic observations. Tectonophysics, 692, 241-251. doi:10.1016/j.tecto.2015.07.020
    Chiu, J. K., Tseng, W. H., & Liu, C. S. (2006). Distribution of gassy sediments and mud volcanoes offshore southwestern Taiwan. Terrestrial Atmospheric and Oceanic Sciences, 17(4), 703-722.
    Chukhrov, F. V., Genkin, A. D., Soboleva, S. V., & Vasova, G. V. (1965). SMYTHITE FROM IRON-ORE DEPOSITS OF KERCH PENINSULA. Geochemistry International Ussr, 2(2), 372-&.
    Dong, J., Zhang, S. H., Jiang, G. Q., Li, H. Y., & Gao, R. (2013). Greigite from carbonate concretions of the Ediacaran Doushantuo Formation in South China and its environmental implications. Precambrian Research, 225, 77-85. doi:10.1016/j.precamres.2012.03.010
    Erd, R. C., & Evans, H. T. (1956). THE COMPOUND FE3S4 (SMYTHITE) FOUND IN NATURE. Journal of the American Chemical Society, 78(9), 2017-2017. doi:10.1021/ja01590a071
    Erd, R. C., Evans, H. T., & Richter, D. H. (1957). SMYTHITE, A NEW IRON SULFIDE, AND ASSOCIATED PYRRHOTITE FROM INDIANA. American Mineralogist, 42(5-6), 309-333.
    Fleet, M. E. (1982). Synthetic smythite and monoclinic Fe3S4. Phys Chem Minerals, 8, 241-246.
    Fu, Y. Z., von Dobeneck, T., Franke, C., Heslop, D., & Kasten, S. (2008). Rock magnetic identification and geochemical process models of greigite formation in Quaternary marine sediments from the Gulf of Mexico (IODP Hole U1319A). Earth and Planetary Science Letters, 275(3-4), 233-245. doi:10.1016/j.epsl.2008.07.034
    Furukawa, Y., Barnes, H. L., (1995). Reactions forming pyrite from precipitated amorphous ferrous sulfide, In: Vairavamurthy, M. A., Schoonen, M. A. A. (Eds.), Geochemical Transformations of Sedimentary Sulfur. ACS Publications, Washington, D.C., pp. 194-205.
    Furukawa, Y., & Barnes, H. L. (1996). Reactions forming smythite, Fe9S11. Geochimica Et Cosmochimica Acta, 60(19), 3581-3591. doi:10.1016/0016-7037(96)00187-1
    Gibbs, G. V., Cox, D. F., Rosso, K. M., Ross, N. L., Downs, R. T., & Spackman, M. A. (2007). Theoretical electron density distributions for Fe- and Cu-sulfide earth materials: A connection between bond length, bond critical point properties, local energy densities, and bonded interactions. Journal of Physical Chemistry B, 111(8), 1923-1931. doi:10.1021/jp065086i
    Goodenough, J. B. (1978). Structural chemistry of iron sulfides. Mat. Res. Bull, 13, 1305-1314.
    Greau, Y., Alard, O., Griffin, W. L., Huang, J. X., & O'Reilly, S. Y. (2013). Sulfides and chalcophile elements in Roberts Victor eclogites: Unravelling a sulfide-rich metasomatic event. Chemical Geology, 354, 73-92. doi:10.1016/j.chemgeo.2013.06.015
    Hallam, D. F., & Maher, B. A. (1994). A RECORD OF REVERSED POLARITY CARRIED BY THE IRON SULFIDE GREIGITE IN BRITISH EARLY PLEISTOCENE SEDIMENTS. Earth and Planetary Science Letters, 121(1-2), 71-80. doi:10.1016/0012-821x(94)90032-9
    He, J. X., Wang, S. H., Zhang, W., Yan, W., & Lu, Z. Q. (2016). Characteristics of mud diapirs and mud volcanoes and their relationship to oil and gas migration and accumulation in a marginal basin of the northern South China Sea. Environmental Earth Sciences, 75(15). doi:10.1007/s12665-016-5894-9
    Hoffmann, V. (1992). Greigite(Fe3S4): magnetic properties and first domain observations. Physics of the Earth and Planetary Interiors, 70, 288-301.
    Hoffmann, V. (1993). MINERALOGICAL, MAGNETIC AND MOSSBAUER DATA OF SMYTHITE (FE9S11). Studia Geophysica Et Geodaetica, 37(4), 366-381. doi:10.1007/bf01613583
    Horng, C. S. (2018). Unusual Magnetic Properties of Sedimentary Pyrrhotite in Methane Seepage Sediments: Comparison With Metamorphic Pyrrhotite and Sedimentary Greigite. Journal of Geophysical Research-Solid Earth, 123(6), 4601-4617. doi:10.1002/2017jb015262
    Horng, C. S., Chen, J. C., & Lee, T. Q. (1992a). Variation in magnetic minerals from two pilo-pleistocene marine-deposited setions, southwestern Taiwan. Journal of the geological society of China, 35, 323-335.
    Horng, C. S., & Chen, K. H. (2006). Complicated magnetic mineral assemblages in marine sediments offshore of southwestern Taiwan: Possible influence of methane flux on the early diagenetic process. Terrestrial Atmospheric and Oceanic Sciences, 17(4), 1009-1026.
    Horng, C. S., Huh, C. A., Chen, K. H., Lin, C. H., Shea, K. S., & Hsiung, K. H. (2012). Pyrrhotite as a tracer for denudation of the Taiwan orogen. Geochemistry Geophysics Geosystems, 13. doi:10.1029/2012gc004195
    Horng, C. S., Laj, C., Lee, T. Q., & Chen, J. C. (1992b). Magnetic characteristics of sedimentary rocks from the Tsengwen-chi and Erhjen-chi sections in southwestern Taiwan. TAO, 3, 519-532.
    Horng, C. S., & Roberts, A. P. (2006). Authigenic or detrital origin of pyrrhotite in sediments?: Resolving a paleomagnetic conundrum. Earth and Planetary Science Letters, 241(3-4), 750-762. doi:10.1016/j.epsl.2005.11.008
    Horng, C. S., & Shea, K. S. (1994). Study of nannofossil biostratigraphy in the eastern part of the Erhjen-chi section, southwestern Taiwan. Special publication of the central geological survey, 8, 181-204.
    Horng, C. S., Torii, M., Shea, K. S., & Kao, S. J. (1998). Inconsistent magnetic polarities between greigite- and pyrrhotite/magnetite-bearing marine sediments from the Tsailiao-chi section, southwestern Taiwan. Earth and Planetary Science Letters, 164(3-4), 467-481. doi:10.1016/s0012-821x(98)00239-8
    Housa, V., Krs, M., Krsova, M., & Pruner, P. (1996). Magnetostratigraphic and micropaleontological investigations along the Jurassic/Cretaceous boundary strata, Brodno near Zilina (Western Slovakia). Geologica Carpathica, 47(3), 135-151.
    Hunger, S., Benning, L.G., 2007. Greigite: a true intermediate on the polysulfide pathway to pyrite. Geochem. Trans, 8:1. doi:10.1186/1467-4866-8-1.
    Hsieh, M. L., Peter L.K. Knuepfer, 2002. Synchroneity and morphology of Holocene river terraces in thesouthern Western Foothills, Taiwan: A guide to interpreting and correlating erosional river terraces across growing anticlines. Geological Society of America, Special Paper 358.
    Imai, N., Mariko, T., Shiga, Y., & Ichige, Y. (1976). Smythite in the copper sulphide ores from the kamaishi mine, Iwate prefecture, Japan. J. Japan. Assoc. Min., 71, 255-263.
    Jiang, W. T., Horng, C. S., Roberts, A. P., & Peacor, D. R. (2001). Contradictory magnetic polarities in sediments and variable timing of neoformation of authigenic greigite. Earth and Planetary Science Letters, 193(1-2), 1-12. doi:10.1016/s0012-821x(01)00497-6
    Jover, J., Rochette, P., Lorand, J. P., Maeder, M., & Bouchez, J. L. (1989). Magnetic mineralogy of some granites from the French Massif Central: origin of the low-field susceptibility. Physics of the Earth and Planetary Interiors, 55, 79-92.
    Kao, S. J., Horng, C. S., Roberts, A. P., & Liu, K. K. (2004). Carbon-sulfur-iron relationships in sedimentary rocks from southwestern Taiwan: influence of geochemical environment on greigite and pyrrhotite formation. Chemical Geology, 203(1-2), 153-168. doi:10.1016/j.chemgeo.2003.09.007
    Kars, M., & Kodama, K. (2015). Authigenesis of magnetic minerals in gas hydrate-bearing sediments in the Nankai Trough, offshore Japan. Geochemistry Geophysics Geosystems, 16(3), 947-961. doi:10.1002/2014gc005614
    Kars, M., Musgrave, R. J., Hoshino, T., Jonas, A. S., Bauersachs, T., Inagaki, F., & Kodama, K. (2018). Magnetic mineral diagenesis in a high temperature and deep methanic zone in Izu rear arc marine sediments, Northwest Pacific Ocean. Journal of Geophysical Research-Solid Earth, 123(10), 8331-8348. doi:10.1029/2018jb015861
    Kontny, A., Elbra, T., Just, J., Pesonen, L. J., Schleicher, A. M., & Zolk, J. (2007). Petrography and shock-related remagnetization of pyrrhotite in drill cores from the Bosumtwi Impact Crater Drilling Project, Ghana. Meteoritics & Planetary Science, 42, 811-827.
    Kopf, A. J. (2002). Significance of mud volcanism. Reviews of Geophysics, 40(2). doi:10.1029/2000rg000093
    Krs, M., Krsova, M., Pruner, P., & Kouklikova, L. (1991). ON THE DETAILED MAGNETOSTRATIGRAPHY OF GREIGITE - (SMYTHITE) MINERALIZATION, SOKOLOV BROWN-COAL BASIN, BOHEMIA). Studia Geophysica Et Geodaetica, 35(4), 267-284. doi:10.1007/bf01613973
    Krs, M., Krsova, M., Pruner, P., Zeman, A., Novak, F., & Jansa, J. (1990). A PETROMAGNETIC STUDY OF MIOCENE ROCKS BEARING MICROORGANIC MATERIAL AND THE MAGNETIC MINERAL GREIGITE (SOKOLOV AND CHEB BASINS, CZECHOSLOVAKIA). Physics of the Earth and Planetary Interiors, 63(1-2), 98-112. doi:10.1016/0031-9201(90)90064-5
    Krs, M., Novak, F., Krsova, M., Pruner, P., & Jansa, J. (1993). MAGNETIC-PROPERTIES, SELF-REVERSAL REMANENCE AND THERMAL ALTERATION PRODUCTS OF SMYTHITE. Studia Geophysica Et Geodaetica, 37(4), 382-400. doi:10.1007/bf01613584
    Krs, M., Novak, F., Krsova, M., Pruner, P., Kouklikova, L., & Jansa, J. (1992). MAGNETIC-PROPERTIES AND METASTABILITY OF GREIGITE SYMTHITE MINERALIZATION IN BROWN-COAL BASINS OF THE KRUSNE HORY PIEDMONT, BOHEMIA. Physics of the Earth and Planetary Interiors, 70(3-4), 273-287. doi:10.1016/0031-9201(92)90194-z
    Krupp, R. E. (1994). PHASE-RELATIONS AND PHASE-TRANSFORMATIONS BETWEEN THE LOW-TEMPERATURE IRON SULFIDES MACKINAWITE, GREIGITE, AND SMYTHITE. European Journal of Mineralogy, 6(2), 265-278.
    Larrasoaña, J. C., Roberts, A. P., Musgrave, R. J., Gracia, E., Pinero, E., Vega, M., & Martinez-Rulz, F. (2007). Diagenetic formation of greigite and pyrrhotite in gas hydrate marine sedimentary systems. Earth and Planetary Science Letters, 261(3-4), 350-366. doi:10.1016/j.epsl.2007.06.032
    Lee, C. H., & Jin, J. H. (1995). Authigenic greigite in mud from the continental shelf of the Yellow Sea, off the southwest Korean Peninsula. Marine Geology, 128, 11-15.
    Lennie, A. R., England, K. E. R., & Vaughan, D. J. (1995). TRANSFORMATION OF SYNTHETIC MACKINAWITE TO HEXAGONAL PYRRHOTITE - A KINETIC-STUDY. American Mineralogist, 80(9-10), 960-967.
    Li, S. H., Chen, Y. H., Lee, J. J., & Sheu, H. S. (2018). Phase transition of iron sulphide minerals under hydrothermal conditions and magnetic investigations. Physics and Chemistry of Minerals, 45(1), 27-38. doi:10.1007/s00269-017-0898-x
    Li, W., Mu, G. J., Zhang, W. G., Lin, Y. C., Zhang, D. L., & Song, H. Z. (2019). Formation of greigite (Fe3S4) in the sediments of saline lake Lop Nur, northwest China, and its implications for paleo-environmental change during the last 8400 years. Journal of Asian Earth Sciences, 174, 99-108. doi:10.1016/j.jseaes.2018.11.021
    Liu, C. C., Jean, J. S., Nath, B., Lee, M. K., Hor, L. I., Lin, K. H., & Maity, J. P. (2009). Geochemical characteristics of the fluids and muds from two southern Taiwan mud volcanoes: Implications for water-sediment interaction and groundwater arsenic enrichment. Applied Geochemistry, 24(9), 1793-1802. doi:10.1016/j.apgeochem.2009.06.002
    Liu, C. C., Kar, S., Jean, J. S., Wang, C. H., Lee, Y. C., Sracek, O., . . . Chen, C. Y. (2013). Linking geochemical processes in mud volcanoes with arsenic mobilization driven by organic matter. Journal of Hazardous Materials, 262, 980-988. doi:10.1016/j.jhazmat.2012.06.050
    Liu, C. C., Maity, J. P., Jean, J. S., Reza, A., Li, Z. H., Nath, B., . . . Bhattacharya, P. (2012). Geochemical characteristics of the mud volcano fluids in southwestern Taiwan and their possible linkage to elevated arsenic concentration in Chianan plain groundwater. Environmental Earth Sciences, 66(5), 1513-1523. doi:10.1007/s12665-011-1391-3
    Mang, C., Kontny, A., Harries, D., Langenhorst, F., & Hecht, L. (2012). Iron deficiency in pyrrhotite of suevites from the Chesapeake Bay impact crater, USA-A consequence of shock metamorphism? Meteoritics & Planetary Science, 47(2), 277-295. doi:10.1111/j.1945-5100.2012.01329.x
    Mlowe, S., Lewis, D. J., Malik, M. A., Raftery, J., Mubofu, E. B., O'Brien, P., & Revaprasadu, N. (2016). Heterocyclic dithiocarbamato-iron(III) complexes: single-source precursors for aerosol-assisted chemical vapour deposition (AACVD) of iron sulfide thin films. Dalton Transactions, 45(6), 2647-2655. doi:10.1039/c5dt03881b
    Moon, E. M., Bush, R. T., Gibbs, D. H. M., & Mata, J. P. (2017). Divergent Fe and S mineralization pathways during the oxidative transformation of greigite, Fe3S4. Chemical Geology, 468, 42-48. doi:10.1016/j.chemgeo.2017.08.007
    Morice, J. A., Rees, L. V. C., & Rickard, D. T. (1969). Mössbauer studies of iron sulphides. J. inorg. nucl. Chem., 31, 3797-3802.
    Neretin, L. N., Bottcher, M. E., Jorgensen, B. B., Volkov, II, Luschen, H., & Hilgenfeldt, K. (2004). Pyritization processes and greigite formation in the advancing sulfidization front in the Upper Pleistocene sediments of the Black Sea. Geochimica Et Cosmochimica Acta, 68(9), 2081-2093. doi:10.1016/s0016-7037(03)00450-2
    Nickel, E. H. (1972). Nickeliferous smythite from some canadian occurrences. Canadian Mineralogist, 11, 514-519.
    Nickel, E. H., & Harris, D. C. (1971). REFLECTANCE AND MICROHARDNESS OF SMYTHITE. American Mineralogist, 56(7-8), 1464-&.
    Pósfai, M., Buseck, P. R., Bazylinski, D. A., & Frankel, R. B. (1998). Iron sulfides from magnetotactic bacteria: Structure, composition, and phase transitions. American Mineralogist, 83, 1469-1481.
    Pazand, K., Aliniya, F., Ghanbari, Y., Hassani, H., & Aghavali, N. (2012). A reconnaissance study of platinum group elements (PGE) contents from sulfide mineralization in pyroxenites in Faryab ophiolite of Iran. Arabian Journal of Geosciences, 5(5), 1021-1029. doi:10.1007/s12517-010-0266-3
    Picard, A., Gartman, A., Clarke, D. R., & Girguis, P. R. (2018). Sulfate-reducing bacteria influence the nucleation and growth of mackinawite and greigite. Geochimica Et Cosmochimica Acta, 220, 367-384. doi:10.1016/j.gca.2017.10.006
    Qiang, X. K., Xu, X. W., Zhao, H., & Fu, C. F. (2018). Greigite formed in early Pleistocene lacustrine sediments from the Heqing Basin, southwest China, and its paleoenvironmental implications. Journal of Asian Earth Sciences, 156, 256-264. doi:10.1016/j.jseaes.2018.01.033
    Reinholdsson, M., Snowball, I., Zillen, L., Lenz, C., & Conley, D. J. (2013). Magnetic enhancement of Baltic Sea sapropels by greigite magnetofossils. Earth and Planetary Science Letters, 366, 137-150. doi:10.1016/j.epsl.2013.01.029
    Reynolds, R. L., Goldhaber, M. B., & Tuttle, M. L. (1991). SULFIDIZATION AND MAGNETIZATION ABOVE HYDROCARBON RESERVOIRS. Aapg Bulletin-American Association of Petroleum Geologists, 75(3), 661-661.
    Rickard, D. T. (1968). SYNTHESIS OF SMYTHITE - RHOMBOHEDRAL FE3S4. Nature, 218(5139), 356-&. doi:10.1038/218356a0
    Rickard, D., Morse, J.W. (2005). Acid volatile sulfide (AVS). Mar. Chem. 97, 141-197.
    Rickard, D., Luther, G.W., III., 2007. Chemistry of iron sulfides. Chemical Reviews, 107(2), 514-62.
    Roberts, A. P. (1995). Magnetic properties of sedimentary greigite (Fe3S4). Earth and Planetary Science Letters, 134(3-4), 227-236. doi:10.1016/0012-821x(95)00131-u
    Roberts, A. P. (2015). Magnetic mineral diagenesis. Earth-Science Reviews, 151, 1-47. doi:10.1016/j.earscirev.2015.09.010
    Roberts, A. P., Chang, L. A., Rowan, C. J., Horng, C. S., & Florindo, F. (2011). MAGNETIC PROPERTIES OF SEDIMENTARY GREIGITE (Fe3S4): AN UPDATE. Reviews of Geophysics, 49. doi:10.1029/2010rg000336
    Roberts, A. P., Florindo, F., Larrasoana, J. C., O'Regan, M. A., & Zhao, X. (2010). Complex polarity pattern at the former Plio-Pleistocene global stratotype section at Vrica (Italy): Remagnetization by magnetic iron sulphides. Earth and Planetary Science Letters, 292(1-2), 98-111. doi:10.1016/j.epsl.2010.01.025
    Roberts, A. P., Jiang, W. T., Florindo, F., Horng, C. S., & Laj, C. (2005). Assessing the timing of greigite formation and the reliability of the Upper Olduvai polarity transition record from the Crostolo River, Italy. Geophysical Research Letters, 32(5). doi:10.1029/2004gl022137
    Roberts, A. P., & Turner, G. M. (1993). DIAGENETIC FORMATION OF FERRIMAGNETIC IRON SULFIDE MINERALS IN RAPIDLY DEPOSITED MARINE-SEDIMENTS, SOUTH-ISLAND, NEW-ZEALAND. Earth and Planetary Science Letters, 115(1-4), 257-273. doi:10.1016/0012-821x(93)90226-y
    Roberts, A. P., & Weaver, R. (2005). Multiple mechanisms of remagnetization involving sedimentary greigite (Fe3S4). Earth and Planetary Science Letters, 231(3-4), 263-277. doi:10.1016/j.epsl.2004.11.024
    Robinson, S. G., & Sahota, J. T. S. (2000). Rock-magnetic characterization of early, redoxomorphic diagenesis in turbiditic sediments from the Madeira Abyssal Plain. Sedimentology, 47(2), 367-394. doi:10.1046/j.1365-3091.2000.00298.x
    Rowan, C. J., & Roberts, A. P. (2006). Magnetite dissolution, diachronous greigite formation, and secondary magnetizations from pyrite oxidation: Unravelling complex magnetizations in Neogene marine sediments from New Zealand. Earth and Planetary Science Letters, 241(1-2), 119-137. doi:10.1016/j.epsl.2005.10.017
    Rowan, C. J., Roberts, A. P., & Broadbent, T. (2009). Reductive diagenesis, magnetite dissolution, greigite growth and paleomagnetic smoothing in marine sediments: A new view. Earth and Planetary Science Letters, 277(1-2), 223-235. doi:10.1016/j.epsl.2008.10.016
    Rudmin, M., Roberts, A. P., Horng, C. S., Mazurov, A., Savinova, O., Ruban, A., . . . Veklich, M. (2018). Ferrimagnetic Iron Sulfide Formation and Methane Venting Across the Paleocene-Eocene Thermal Maximum in Shallow Marine Sediments, Ancient West Siberian Sea. Geochemistry Geophysics Geosystems, 19(1), 21-42. doi:10.1002/2017gc007208
    Rudmin, M. A., Mazurov, A. K., Ruban, A. S., & Usoltsev, D. G. (2017). CONDITIONS OF FORMATION OF PYRRHOTITE AND GREIGITE IN SEDIMENTS OF BAKCHAR DEPOSIT, WESTERN SIBERIA. Bulletin of the Tomsk Polytechnic University-Geo Assets Engineering, 328(4), 94-107.
    Sagnotti, L., Roberts, A. P., Weaver, R., Verosub, K. L., Florindo, F., Pike, C. R., . . . Wilson, G. S. (2005). Apparent magnetic polarity reversals due to remagnetization resulting from late diagenetic growth of greigite from siderite. Geophysical Journal International, 160(1), 89-100. doi:10.1111/j.1365-246X.2005.02485.x
    Sassen, R., McCabe , C., Kyle, R., Chinn , E. W. (1989). Deposition of magnetic pyrrhotite during alteration of crude oil and reduction of sulfate. Org. Geochem, 14(4), 381-392.
    Schwarzenbach, E. M., Gazel, E., & Caddick, M. J. (2014). Hydrothermal processes in partially serpentinized peridotites from Costa Rica: evidence from native copper and complex sulfide assemblages. Contributions to Mineralogy and Petrology, 168(5). doi:10.1007/s00410-014-1079-2
    Skinner, B. J., Grimaldi, F. S., & Erd, R. C. (1964). GREIGITE THIO-SPINEL OF IRON - NEW MINERAL. American Mineralogist, 49(5-6), 543.
    Snowball, I. F. (1991). MAGNETIC HYSTERESIS PROPERTIES OF GREIGITE (FE3S4) AND A NEW OCCURRENCE IN HOLOCENE SEDIMENTS FROM SWEDISH LAPPLAND. Physics of the Earth and Planetary Interiors, 68(1-2), 32-40. doi:10.1016/0031-9201(91)90004-2
    Sun, C. H., Chang, S. C., Kuo, C. L., Wu, J. C., Shao, P. H., & Oung, J. N. (2010). Origins of Taiwan's mud volcanoes: Evidence from geochemistry. Journal of Asian Earth Sciences, 37(2), 105-116. doi:10.1016/j.jseaes.2009.02.007
    Taylor, L. A. (1970). SMYTHITE, FE3+XS4, AND ASSOCIATED MINERALS FROM SILVERFIELDS-MINE-COBALT-ONTARIO. American Mineralogist, 55(9-10), 1650-&.
    Taylor, L. A., & Williams, K. L. (1972). SMYTHITE, (FE,NI)9S11 - REDEFINITION. American Mineralogist, 57(11-1), 1571-1577.
    van Dongen, B. E., Roberts, A. P., Schouten, S., Jiang, W. T., Florindo, F., & Pancost, R. D. (2007). Formation of iron sulfide nodules during anaerobic oxidation of methane. Geochimica Et Cosmochimica Acta, 71(21), 5155-5167. doi:10.1016/j.gca.2007.08.019
    Vandenberghe, R. E., Degrave, E., Debakker, P. M. A., Krs, M., & Hus, J. J. (1991). MOSSBAUER-EFFECT STUDY OF NATURAL GREIGITE. Hyperfine Interactions, 68(1-4), 319-322.
    Wang, Y. H., Zhang, W. G., Liu, X. J., Li, G. X., & Liu, M. (2015). Formation of greigite under different climate conditions in the Yellow River delta. Science China-Earth Sciences, 58(2), 300-308. doi:10.1007/s11430-014-4981-6
    Weaver, R., Roberts, A. P., & Barker, A. J. (2002). A late diagenetic (syn-folding) magnetization carried by pyrrhotite: implications for paleomagnetic studies from magnetic iron sulphide-bearing sediments. Earth and Planetary Science Letters, 200(3-4), 371-386. doi:10.1016/s0012-821x(02)00652-0
    Yamaguch, S., & Wada, H. (1972). POLYMORPHIC RELATION BETWEEN GREIGITE AND SMYTHITE (FE3S4). Zeitschrift Fur Anorganische Und Allgemeine Chemie, 392(2), 191-+. doi:10.1002/zaac.19723920212
    Yamaguchi, S., & Wada, H. (1972). Greigite as seed for crystal growth of pyrrhotite. Journal of Crystal Growth, 15, 153-154.
    Yang, H. J., Lee, C. Y., Chiang, Y. J., Jean, J. S., Shau, Y. H., Takazawa, E., & Jiang, W. T. (2016). Distribution and hosts of arsenic in a sediment core from the Chianan Plain in SW Taiwan: Implications on arsenic primary source and release mechanisms. Science of the Total Environment, 569, 212-222. doi:10.1016/j.scitotenv.2016.06.122
    Yang, T., Dekkers, M. J., & Chen, J. (2018). Thermal Alteration of Pyrite to Pyrrhotite During Earthquakes: New Evidence of Seismic Slip in the Rock Record. Journal of Geophysical Research-Solid Earth, 123(2), 1116-1131. doi:10.1002/2017jb014973
    You, C. F., Gieskes, J. M., Lee, T., Yui, T. F., & Chen, H. W. (2004). Geochemistry of mud volcano fluids in the Taiwan accretionary prism. Applied Geochemistry, 19(5), 695-707. doi:10.1016/j.apgeochem.2003.10.004

    中文參考文獻:
    何信昌、謝凱旋、高銘健、陳華玟,2005,新化圖幅(1:50000):經濟部中樣地質調查所台灣地質圖幅,第五十號。
    林啟文,2013,台灣地質說明書,旗山圖幅(1:50000):經濟部中樣地質調查所台灣地質圖幅,第五十六號。
    江威德(2012) 天然氣水合物資源潛能調查:震測、地熱及地球化學研究調查(1/4)。臺灣西南海域沉積物自生礦物之電子顯微分析。行政院經濟部中央地質調查所報告第101-22-G號,91頁。
    江威德(2013) 天然氣水合物資源潛能調查:震測、地熱及地球化學研究調查(2/4)。臺灣西南海域沉積物自生礦物之電子顯微分析。行政院經濟部中央地質調查所報告第102-19-G號,71頁。
    江威德(2014) 天然氣水合物資源潛能調查:震測、地熱及地球化學研究調查(3/4)。臺灣西南海域沉積物自生礦物之電子顯微分析。行政院經濟部中央地質調查所報告第103-16-G號,93頁。
    江威德(2015) 天然氣水合物資源潛能調查:震測、地熱及地球化學研究調查(4/4)。臺灣西南海域沉積物自生礦物之電子顯微分析。行政院經濟部中央地質調查所報告第104-11-G號,121頁。
    史太克(Stach, L. W., 中、英),1957,嘉義及新營東部麓山帶上新生代地層系統及其對比。中國石油公司成立十周年紀念「臺灣石油地質討論會論文專輯」,第213-221頁。
    高樹基、洪崇勝、劉康克. (1991). 曾文溪剖面有機碳含量與磁性礦物種類之關係. 地質,第十一卷,第二期,第121~132頁。
    陳志雄、吳樂群、王源(1993) 高雄地區旗山斷層兩側地層年代之檢討:地質,第十三卷,第一期,第37~56頁。
    陳培源. (1993). 臺灣黏土礦物學研究之進展與成果. 經濟部中央地調所特刊, 7, 101-126.
    謝英宗. (2008). 台灣西南部有孔蟲的氧同位素地層. 國立臺灣博物館學刊, 61, 25-36.
    董姿莉(2002) 臺灣西南部新第三紀泥岩中硫化鐵礦物岩相和古地磁隱示:國立成功大學地球科學研究所碩士論文,共73頁。
    王雅蘘(2017) 臺灣南部二重溪層沉積物晚成岩硫複鐵礦與菱硫鐵礦之電子顯微研究:國立成功大學地球科學研究所碩士論文,共202頁。
    陳朝煒(2014) 臺灣西南海域永安及好景海脊甲烷冷泉沉積物中自生性磁黃鐵礦之電子顯微研究:國立成功大學地球科學研究所碩士論文,共114頁。
    陳怡瑄(2015) 臺灣南部低度變質泥岩中黃鐵礦-磁黃鐵礦轉變之電子顯微研究:國立成功大學地球科學研究所碩士論文,共150頁。
    徐達偉(2015) 臺灣西南海域永安海脊甲烷冷泉址沉積物之礦物自生作用:國立成功大學地球科學研究所博士論文,共239頁。
    趙鴻椿(2003) 臺灣地區泥火山氣體分析及其對全球甲烷來源的可能影響:國立成功大學地球科學研究所碩士論文,共81頁。
    張恭豪(2015) 台灣西南部前陸盆地初始發育的沉積環境演化:國立成功大學地球科學研究所碩士論文,共70頁。
    詹博舜(2001) 由穩定氫氧同位素探討台灣西南活動構造帶泉水之來源: 國立臺灣大學地質科學研究所碩士論文,共80頁。
    葉高華(2003) 由流體地球化學探討台灣泥火山的成因:國立臺灣大學海洋研究所碩士論文,共61頁。
    洪崇勝(1991) 臺灣西南部曾文溪、二仁溪剖面磁性礦物與磁地層之研究:國立臺灣大學海洋研究所博士論文,共324頁。
    張阡豪(2005) 台灣西南泥火山沉積物之特性、來源與西南部石灰岩體之隱示:國立臺灣大學地質科學研究所碩士論文,共97頁。
    郁靜慧(2005) 台灣西南泥灌入體構造特性研究:國立中央大學應用地球物理與環境科學研究所碩士論文,共99頁。
    廖明威(2014) 台灣西南部麓山帶下部上新統之沉積環境及地層對比研究:國立中央大學地球物理研究所碩士論文,共87頁。
    鳥居敬造(1932) 臺南州新化油田調查報告。臺南總督府殖產局,609號,29頁.

    無法下載圖示 校內:2024-07-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE