簡易檢索 / 詳目顯示

研究生: 林珮君
Lin, Pei-Chun
論文名稱: 橢圓型偏微分方程上的理論
A Theory on Elliptic Partial Differential Equations
指導教授: 陳若淳
Chen, Roger
學位類別: 碩士
Master
系所名稱: 理學院 - 數學系應用數學碩博士班
Department of Mathematics
論文出版年: 2007
畢業學年度: 95
語文別: 英文
論文頁數: 86
中文關鍵詞: 極大值原則哈奈克不等式橢圓方程
外文關鍵詞: Elliptic equation, Harnack Inequality, maximal principles
相關次數: 點閱:83下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文的目的是要給予二階橢圓偏微分方程的一些概念的描述。我們的目標是要用些方法得到二階橢圓偏微分方程的一些事先的估計,著重在極大值原則、Harnack 不等式及它們的應用。

    The aim of this thesis is to give a simple description of the basic ideas of second order linear elliptic partial differential equations. The goal is to learn some basic methods for obtaining various a priori estimates for second-order partial differential equations of elliptic type with particular emphasis on maximal principles, Harnack inequalities, and their applications.

    1 Introduction 2 2 Laplace Equation 4  2.1 Fundamental Solution . . . . . . . . . . . . . . . . 4  2.2 Some Properties of Harmonic Functions . . . . . . . . 6  2.3 Regularity of Weakly Harmonic Functions . . . . . . . .14  2.4 Green’s Function on a Ball . . . . . . . . . . . . 16  2.5 Perron’s Method . . . . . . . . . . . . . . . .. . 22 3 Classical Solutions for Linear Elliptic Di_erential Operators 28  3.1 Classical Maximum Principles . . . . . . . . . . . . 28  3.2 A Priori Estimates . . . . . . . . . . . . . . . . 36  3.3 Gradient Estimates . . . . . . . . . . . . . . . . 41  3.4 The Dirichlet Problem . . . . . . . . . .  . . . . 43  3.5 Interior and Boundary Regularity . . . . . . . . . .  47  3.6 Application . . . . . . . . . . . . . . . . . . . 51 4 Weak Solutions for Divergence Form 54  4.1 Weak Maximum Principle . . . . . . . . . . . . . 56  4.2 Solvability of the Dirichlet Problem . . . . . . . . . 58  4.3 Interior and Boundary Regularity . . . . . . . . . .  58  4.4 Growth of Local Integrals . . . . . . . . . . . . . 62  4.5 H¨older Estimates . . . . . . . . . . . . . . . . 68  4.6 Local Boundedness . . . . . . . . . . . . . . . . 73  4.7 Harnack Inequality . . . . . . . . . . . . . . . . 80  4.8 H¨older Continuity . . . . . . . . . . . . . . . . 83

    [1] M. H. Protter and H. F. Weinberger. Maximum principles in differential equations, Springer Verlag, 1975.
    [2] D. Gilbarg and N. S. Trudinger. Elliptic partial differential equations of second order, Springer, New York, 1983.
    [3] L. C. Evans. Partial Differential Equations, Graduate Studies in Mathematics, Volume 19, American Mathematical Society, Providence, Rhode Island.
    [4] L. A. Caffarelli. Interior a priori estimates for solutions of fully nonlinear equations, Ann. of Math. (2) 130, (1989), 189-213.
    [5] L. A. Caffarelli, and X. Cabre. Fully Nonlinear Elliptic Equations, American Mathematical Society Colloquium Publications No. 43, American Mathematical Society, Providence, R. I., 1995.
    [6] Li, Y. Y., Some existence results for fully nonlinear elliptic equations of Monge-Ampere type, Comm. Pure Appl. Math. 43, (1990), 233-271.
    [7] Qing Han and Fanghua Lin. Elliptic Partial Differential Equations, Courant Lecture Notes 1, New York University, 1997.
    [8] O. Ladyzhenskaya and N. Ural’tseva, Linear and Quasilinear Elliptic Equations, Academic Press, 1968.
    [9] J. Moser. A new proof of De Giorgi’s theorem concerning the regularity problem for elliptic differential equations, Comm. Pure Appl. Math. 13 (1960), 457-468.
    [10] F. John. Partial Differential Equations, 4thed., Springer-Verlag, 1982.
    [11] M. Taylor. Partial Differential Equations vols. Springer-Verlag, 1996, 1997.
    [12] G. H. Folland. Introduction to Partial Differential Equations. Princeton University Press, 1995.
    [13] J. Jost. Partial Differential Equations. New York: Springer 2002.
    [14] M. Renardy and R. C. Rogers. An Introdiction to Partial Differential Equations. New York: Springer, 2004.
    [15] E. De Giorgi. Sulla differenziabilit´a e l’analiticit´a delle estremali degli integrali multipli regolari, Mem. Accad. Sci. Torino, Cl. Sci. Fis. Mat. Nat. 3 (1957), 25-43.
    [16] J. Nash. Continuity of solutions of parabolic and elliptic equations, Amer. J. Math. 80 (1958), 931-954.
    [17] J. Moser. On Harnacks theorem for elliptic differential equations. Comm. Pure Appl. Math, 14: 577-591, 1961.
    [18] M. Giaquinta, Introduction to Regularity Theory for Nonlinear Elliptic Systems, Birkh¨auser, Basel, 1993.
    [19] M. Giaquinta, Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic Systems, Princeton Univ. Press, Princeton, NJ, 1983.
    [20] B. Gidas, W. M. Ni, and L. Nirenberg. Symmetry and related properties via the maximum principle, Comm. Math. Phys. 6 (1981), 883-901.

    下載圖示 校內:2010-01-22公開
    校外:2017-01-22公開
    QR CODE