| 研究生: |
翁銘彥 Weng, Ming-Yan |
|---|---|
| 論文名稱: |
砷化鎵長晶之模式分析 Modeling Analysis of GaAs Crystal Growth |
| 指導教授: |
趙隆山
Chao, Long-Sun |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 工程科學系 Department of Engineering Science |
| 論文出版年: | 2003 |
| 畢業學年度: | 91 |
| 語文別: | 中文 |
| 論文頁數: | 124 |
| 中文關鍵詞: | 布氏爐 、砷化鎵 、長晶 |
| 外文關鍵詞: | crystal growth, Bridgman furnace, GaAs |
| 相關次數: | 點閱:87 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
砷化鎵於單晶成長的過程中,包含了溫度場、流場、濃度場的互相耦合、液固相變化時的潛熱釋放效應、液固界面的形狀變化、長晶時的濃度再分佈等,是一個很複雜的問題,其中濃度場中的溶質偏析現象,特別受到關注。
本文藉由軸對稱的模式來模擬砷化鎵在布氏爐中的長晶過程。在數值方法上在採用SIMPLE演算法來求解速度場,再以等效比熱-熱焓法來處理凝固相變化時潛熱釋放的問題,並使用特殊增加格點的方式去處理濃度場在液固界面的效應。本文使用上述方法來探討砷化鎵在不同工作條件(潛熱、雷利數)下,溫度場、液固界面形狀、流場變化及濃度再分佈間的相互關係。
從結果中發現,由於液、固態熱傳導係數的差異造成徑向的溫度梯度,而使得液固界面產生撓曲,進而產生自然對流。而自然對流對於溶質在分佈具有強烈的主導性。當考慮潛熱釋放效應後,會使俓向溫度梯度加大,形成更撓曲的液固界面的形狀及更強的流場分佈,本文藉由調整爐壁溫度分佈,得到較平坦的液固界面,進而提昇界面之溶質分佈均勻度,來改善長晶之偏析現象。
The crystal growth of GaAs includes the coupling of temperature, flow and concentration fields, the releases latent heat, the shape variation of solid/liquid interface, and the solute redistribution. In this complicated problem of crystal growth, the solute segregation attracts great attention. In this paper, an axi-symmetric model was built to simulate the crystal growth of GaAs in a Bridgman furnace. The SIMPLE algorithm was used to solve the flow field and the specific heat/enthalpy method was applied to handle the latent heat. A special control-volume treatment of concentration field at the solid/liquid interface was utilized to formulate the solute release there. The proposed model was used to investigate the relationship among the flow and temperature fields, the shape of solid/liquid interface, and the solute redistribution under different working conditions (different thermal boundary conditions, Rayleigh numbers, and Stefan numbers). From the computing results, by the latent heat and ks ¹ kL, the radiant temperature gradients were induced, which lead to the curved solid/liquid interface. And the natural convection is caused by the curved interface. The natural convection has a great effect on the solute redistributions, but not on the temperature fields. Modifying the temperature distribution along the furnace wall could make the solid/liquid interface flatter (less curved), which could improve the condition of solute segregation in either radial or axial direction.
Adornato, P. M. and Brown, R. A., “Convection and Segregation in Directional Solidification,” J. of Crystal Growth, Vol. 80, pp. 155-189 (1987).
Anderson, D. A., Tannehill, J. C. and Pletcher, R. H., “Computational Fluid Mechanics and Heat Trans.,” Hemisphere (1990).
Bourret, E. D. and Merk, E. C., “Effects of Total Liquid Encapsulation on The Characteristics of GaAs Single Crystals Growth by The Vertical Gradient Freeze Technique,” J. of Crystal Growth, Vol. 110, pp. 395-420 (1991).
Chang, C. J. and Brown, R. A., “Radial Segregation Induced by Natural Convection and Melt/Solid Interface Shape in Vertical Bridgeman Growth,” J. of Crystal Growth, Vol. 63, pp. 343-364 (1983).
Chao, L. S., “The Effect of Thermal Boundary Condition to The Liquid-Solid Interface in A Bridgeman Furnace,” The Fourteenth National Conference on Theoretical and Applied Mechanics, Chung Li, Taiwan, R. O. C., December14-15, pp. 1639 (1990).
Crochet, M. J., Dupret, F. and Ryckmans, Y., “Numerical Simulation of Crystal Growth in A Vertical Bridgeman Furnace,” J. of Crystal Growth, Vol. 97, pp. 236-250 (1989).
Dantzig, J. A. and Chao, L. S., “Modeling Bridgeman Crystal Growth in Microgravity,” TMS Fall Meeting, Indianapolis, Indiana, USA, Oct. (1989).
Date, A. W., “A Strong Enthalpy Formulation for the Stefan Problem,” International Journal of Heat and Mass Transfer, Vol.34, pp. 2231-2283 (1991).
Fleming, M. C., “Solidification Processing,” McGraw-Hill, New York, USA (1974).
Hsiao, J. S. “An Efficient Algorithm for Finite Difference Analysis of Heat Transfer with Melting and Solidification,” Numerical Heat Transfer, Vol. 8, pp. 653-666 (1985).
Jonathan A. Dantzig, “Modeling Liquid-Solid Phase Changes with Melt Convection,” International Journal of Numerical Methods in Engineering Vol. 28, No. 8, pp. 1769-1785, August, (1989).
Kim, D. H., “Dynamic Analysis of Transport Phenomena in Directional Solidification of Binary Alloys,” Sc. D. Thesis, MIT (1990).
Kim, D. H. and Brown, R. A., “Transient Simulation of Convection and Solute Segregation of GaAs Growth in Gradient Freeze Furnace,” J. of Crystal Growth, Vol. 109, pp. 66-74 (1991).
Kim, D. H. and Brown, R. A., “Modelling of directional solidification : from Scheil detailed numerical simulation,” J. of Crystal Growth, Vol. 109, pp. 50-65 (1991).
Kim, D. H. and Brown, R. A., “Modelling of dynamics of HgCdTe growth by the vertical Bridgman method,” J. of Crystal Growth, Vol. 114, pp. 411-434 (1991).
Kurz, W and Fisher, D. J. “Foundamentals of Solidification,” Trans. Tech. Publication Ltd., Switzerland (1989).
Müller, G. and Birkmann B. “Optimization of VGF-growth of GaAs crystals by the aid of numerical modeling” J. of Crystal Growth, Vol. 237-239, pp. 1745-1751 (2002).
Ozoe, H., Toh K. and Inoue T., “Transition Mechanism of Flow Modes in Czochralski Convection,” J. of Crystal Growth, Vol. 110, pp. 472-486 (1990).
Patankar, S. V., “Numerical Heat Transfer and Fluid Flow,” Hemisphere (1980).
Rappaz, M., “Modelling of Microstructure Formation in Solidification Processes,” International Materials Reviews, Vol. 34, No. 3, pp. 93-123 (1989)
Roache, P. J., “Computational Fluid Dynamics,” Hermosa, New Mexico, USA (1976).
Smith, W. F., “Principles of Materials Science and Engineering,” McGraw-Hill, New York, USA, 2nd ed. (1990).
Sparrow, E. M., S. V. Patankar and S. Ramadhyani, “Analysis of Melting in The Melt Region,” ASME J. of Heat Transfer, Vol. 99, pp. 520-531 (1977).
Spalding, D. B. and Patankar, S. V., “A calculation procedure for heat, mass and momentum transfer in three-dimensional parabolic flows,” Int. J. Heat and Mass Transfer, Vol. 15, pp. 1787-1800 (1986).
Tszeng, T. C., Im, Y. T. and Kobayashi, S., “Thermal Analysis of Solidification by The Temperature Recovery Method,” int. J. Mach. Tools Manufact. Vol. 29, No. 1, pp. 107-120 (1989).
Voller, V. R., and Swa, C. R., “General Source Based Method for Solidification Phase Change,” Numerical Heat Transfer, Part B, Vol. 19, pp. 175-189 (1991).
Wang, C. A., “Crystal Growth and Segregation in Vertical Bridgman Configuration,” Ph. D. Thesis, Mass. Inst. Technol., Cambridge (1984).
王正麟,砷化鎵單晶成長分析,碩士論文,成功大學工程科學研究所 (2000)。
林錦逢,GTE爐結晶成長之模式分析,碩士論文,成功大學工程科學研究所 (1994)。
洪仕育,布氏爐之熱與質量傳遞模式研究,碩士論文,成功大學工程科學研究所 (1993)。
施耀泉,砷化鎵結晶成長之模式分析,碩士論文,成功大學工程科學研究所 (1999)。
博達科技,砷化鎵的特性,http://www.procomp.com.tw/csd/chinese/csd/g/g1.asp (2003)。
薛千山,布利基曼爐結晶成長之模式研究,碩士論文,成功大學工程科學研究所 (1992)。
謝豐仰,砷化鎵長晶之熱與質量傳遞分析,碩士論文,成功大學工程科學研究所 (2001)。