簡易檢索 / 詳目顯示

研究生: 張竣發
Jhang, Jyun-Fa
論文名稱: 資料型隨機子空間識別法於環境振動下之系統模態參數識別
Identification of Modal Parameters of Systems under Ambient Vibration by the Data-driven Stochastic Subspace Identification
指導教授: 江達雲
Chiang, Dar-Yun
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 92
中文關鍵詞: 模態分析子空間識別法非白訊
外文關鍵詞: modal identification, subspace identification, non-white noise
相關次數: 點閱:64下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 以往環境模態分析因環境激勵的隨機性,會假設激勵為定常白訊,然而實際環境不一定為白訊,意即環境激勵中某些頻率的訊號能量較高。根據前人研究可利用定常白訊經由一假想系統可獲得定常非白訊之響應,再利用此響應作用於待識別之系統即可模擬在定常非白訊之環境下系統之動態行為。吾人利用時域法之資料型隨機子空間識別法探討定常非白訊之環境振動問題,資料型隨機子空間識別法是利用奇異值分解判別系統階數後再進一步計算模態參數。由數值分析顯示,對於激勵定常非白訊的參數識別,在判別系統階數時要同時考慮待識別系統之階數與假想系統之階數,藉此才有足夠之動態資訊以利識別。

    In operational modal analysis, we usually assume that excitation is a stationary white noise for ambient randomness. According to previous studies, a non-white response can be obtained through a hypothetical system using stationary white noise. Furthermore, the response can be applied to the system to simulate the dynamic behavior of the system in a non-white ambient vibration. In the research, we solve the problems of modal identifi-cation for non-white ambient vibration by Data-driven Stochastic Subspace Identifica-tion (SSI-DATA). SSI-DATA determines the orders of the system by singular value de-composition and calculates the modal parameters. For the modal parameter identification of system in ambient vibration of non-white noise, the numerical analysis shows that the order of the identified system and the order of the hypothetical system must be taken into consideration when determining the system order, so that we get correct identifica-tions with sufficient dynamic information.

    摘要 I 致謝 V 目錄 VI 表目錄 VIII 圖目錄 IX 第一章 緒論 1 1-1 引言 1 1-2 模態分析與系統識別 2 1-3 文獻回顧 4 1-4 研究動機與目的 8 1-5 本文架構 9 第二章 環境振動之相關理論 10 2-1 引言 10 2-2 隨機振動與隨機過程 10 2-2-1相關函數與協方差 11 2-2-2定常與非定常過程 12 2-2-3全態過程 14 2-3 確定性動力分析 15 2-3-1結構系統之自由振動分析 15 2-3-2結構系統之單位脈衝響應分析 17 2-4 定常外力過程分析 18 第三章 環境振動之相關理論 23 3-1 引言 23 3-2 資料型隨機子空間識別法 24 3-2-1狀態空間 24 3-2-2數據矩陣 28 3-2-3正交投影 29 3-2-4奇異值分解 33 3-2-5求解模態參數 34 3-3 模態可信度 36 第四章 數值分析 37 4-1 引言 37 4-2 集集大地震實測紀錄之參數識別 37 4-3 受定常非白訊激勵之參數識別 42 第五章 結論 48 參考文獻 50

    [1]Carne, .T.G., Lauffer, J.P., and James, G.H., “The Natural Excitation Technique for modal Parameter Extraction from Operating Wind Turbines,” SAND92-1666.UC-261, Sandia National Laboratories, 1993.
    [2]Carne, T.G., Lauffer, J.P., Gomez, A.J. and Benjannet, H., “Modal Testing an Immense Flexible Structure Using Natural and Artificial Excitation,” The International Journal of Analytical and Experimental Modal Analysis, The Society of Experimental Mechanics, Oct. 1998.
    [3]Ewins, D. J., “Modal Testing: Theory and Practice,” Research Studies Press, 1984.
    [4]Ibrahim, S. R. and Mikulcik, E. C., “The experimental Determina-tion of Vibration Parameters from Time Responses,” Shock and Vi-bration Bulletin, Vol. 46, Pt. 5, pp. 183-198, Aug. 1976.
    [5]Ibrahim, S. R. and Mikulcik, E. C., “A Method for the Direst Identifi-cation of Vibration Parameters from Free Response,” Shock and Vi-bration Bulletin, Vol. 47, Part. 4, pp. 183-198, Sep. 1977.
    [6]Ibrahim, S. R., Brincker, R. and Asmussen, J. C., “Modal Parameter Identification from Response of General Unknown Random Inputs,” ISSN 1395-7953 R9544, 1995
    [7]James Hu, S. L., Yang, W. L., Liu, F.S. and Li, H. J., “Fundamental comparison of time-domain experimental modal analysis methods based on high-and first-order matrix models,” Journal of Sound and Vibration, Vol.333, No.25, pp.6869-6884, 2014.
    [8]Juang, J. N. and Pappa, R. S., “An Eigensystem Realization Algorithm for Modal Parameter Identification and Modal Reduction,” Journal of Gudance and Control Dynamics, AIAA, Vol.8, No. 5, pp.620-627, 1985.
    [9]Juang, J. N. and Pappa, R. S., “Effects of Noise on Modal Parameter Identification by the Eigensystem Realization Algorithm, ”Journal of Gudance and Control Dynamics,” AIAA, Vol. 9, No. 3, pp.294-303, 1986.
    [10]Juang, J. N., Cooper, J. E. and Wright J. R., “An Eigensystem Realization Algorithm using Data Correlations(ERA/DC) for Modal Parameter Identification,” Control-Theory and Advanced Technology, Vol. 4, No. 1, pp. 5-14, March, 1988.
    [11]Nicholson, W. K., “Linear Algebra with Applications”, McGraw. Hill, sixth edition, 2010.
    [12]Pappa, R. S. and Ibrahim, S. R., “A Parametric Study of Ibrahim Time Domain Modal Analysis,” Shock and Vibration Bulletin, Vol.51, Part. 3, pp. 43-72, 1981.
    [13]Peeters, B. and Roeck, G.D., “Reference-based stochastic subspace identification for output-only modal analysis,” Mechanical System Signal Processing, pp. 855–878. 1999.
    [14]Peeters, B. and Roeck, G.D., “Stochastic System Identification for Operational Modal Analysis A Review,” Journal of Dynamic Systems, Measurement, and Control, Vol. 123, pp. 659-667, 2001.
    [15]Van Overschee, P., De Moor B., “Subspace Algorithm for the Stochastic Identification Problem.” In proceedings of the 30th IEEE Conference on Decision and Control, pp. 1321-1326, 1991.
    [16]Van Overschee, P., De Moor B., “Subspace Identification for Linear Systems” Kluwer Academic Pub., 1996.
    [17]林章生, 相關函數法於非定常環境振動之模態參數識別研究, 碩士論文,國立成功大學航空太空工程學研究所, 2004.
    [18]蘇芳禾, 特徵系統實現法於定常環境振動之模態參數識別研究, 碩士論文,國立成功大學航空太空工程學研究所, 2006.
    [19]王建智, 資料型隨機子空間法於系統之模態參數識別研究, 碩士論文,國立成功大學航空太空工程學研究所, 2017.
    [20]陳豹, 現代控制理論, 科技圖書股份有限公司,1992

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE