| 研究生: |
陳雨晗 Chen, Yu-Han |
|---|---|
| 論文名稱: |
連棟住宅外殼翻修構法之生命週期減碳效益評估 Life-Cycle Assessment of Construction Methods for Building Envelope Renovation of Row Houses in Taiwan |
| 指導教授: |
蔡耀賢
Tsay, Yaw-Shyan |
| 學位類別: |
碩士 Master |
| 系所名稱: |
規劃與設計學院 - 建築學系 Department of Architecture |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 中文 |
| 論文頁數: | 108 |
| 中文關鍵詞: | 生命週期評估 、低碳構法 、EnergyPlus 、SimaPro |
| 外文關鍵詞: | Life cycle assessment, Low-Carbon construction methods, EnergyPlus, SimaPro |
| 相關次數: | 點閱:123 下載:22 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
建築產業佔全球溫室氣體排放總量30%,未來建築產業發展顯然將成為減少全球碳排放的關鍵因素,台灣也提出2050年將溫室氣體排放降至2005年的50%,而目前住宅部門卻沒有明顯的減碳趨勢。以建築生命週期來說,日常使用的碳排與經濟成本佔生命週期最大的比例。一般來說,計算新建建築物生命週期時會極為重視使用階段的碳排,而更替部分構造或者材料時卻極少考慮使用階段的影響。此外,大量研究表明外殼改善策略可以顯著減少生命週期碳排量,且同時減少生命週期成本,但較難以採用法規強制推動,目前大多以補助與提供節能改善諮詢服務辦理。因此,本研究希望藉由生命週期碳排放量與成本的分析,提出兼顧建築成本的既有住宅外殼翻修減碳策略建議。同時,分析碳排放量與成本的相對關係,提供政策經濟補助的參考。
本研究以台灣常見RC構造的連棟住宅為研究對象,針對外牆系統、玻璃及屋頂之建築構法對於使用階段碳排之影響,並進行以生命週期評估(Life Cycle Assessment,LCA)與成本評估。碳排放量的計算採用低碳建築聯盟與SimaPro的資料庫,使用期間耗能量以動態耗能模擬軟體EnergyPlus進行分析,而成本的計算則採用實際市場價格調查方式。研究分為單一構法評估、組合構法評估以及減碳成本係數三個部分進行討論。單一構法評估部分,比較外殼構法在北、中、南氣候區,四種建築朝向的排碳與成本特徵。結果顯示,屋頂構法的排碳量受氣候區影響較大,越靠近南部,會偏向選擇有添加隔熱材料的屋頂構法。外牆與玻璃材料受建築朝向影響及較大,在東西朝向排碳成本較低。其中,外牆翻修成本較高而減碳效果較低,翻修時可優先考量建造成本較低之外牆構法。
組合構法評估部分,結果顯示依據建築朝向與氣候區選用合適的構法組合可以同時減少大約4%~8%成本與排碳量,且中、南部氣候區減少比例明顯大於北部氣候區。減碳成本係數部分為以降低排碳成本評估方法的成本佔比,突出減碳之重要性,計算其成本所需調整之比例。在本研究不同氣候區、建築朝向的模擬中,排碳成本最佳之方案會依據建築朝向、氣候區有所不同,而減碳量最佳之方案都為冰漆屋頂、添加隔熱材料之外牆並搭配透明離線反射玻璃。
In terms of building life cycle, carbon emission and economic cost account for the largest proportion of the life cycle during the use stage. Generally speaking, the carbon emission in the use stage is very important when calculating the life cycle of a new building, while the influence of the use stage is rarely considered when replacing some constructions or materials.Nowadays, many studies pointed out that the improvement of the shell of existing buildings was effective strategy to achieve carbon reduction but difficult to promote through the laws. The purpose of this study is to put forward various carbon reduction benefits assessments of shell renovation methods through the analysis of life cycle carbon emissions and costs. In addition to provide a reference amount of policy subsidies through the relative relationship between carbon emissions and cost.
In this research, a RC row house was selected to study on the impact of the replacement of the exterior walls, glasses and roofs. The calculation of carbon emissions used the database of the Low Carbon Building Alliance and SimaPro. The energy consumption during use stage was analyzed by the EnergyPlus, and the cost was calculated by the actual market price. First, the sensitivity analysis of the single construction method was performed to confirm the carbon emission and cost changes of the shell construction method in different climatic regions and building orientations. Then, the combined construction methods were conducted. As a result, the carbon emission of the roof construction method was greatly affected by the climate zone.
Costs and carbon emissions can reduce about 4% to 8% at the same time when choosing a suitable strategy, and the reduction rate of the central and southern climate zones were greater than that of the northern. In addition, the reduction ratio of the central and southern climate regions was significantly greater than that of the northern climate regions. The reduction coefficient is to reduce the cost proportion of carbon emission cost evaluation method, highlight the importance of carbon reduction, and calculate the proportion of cost adjustment. In all cases, the best way to reduce carbon is to use ice paint roof, external wall with thermal insulation material and transparent off-line reflective glass.
1. 國家發展改革委能源研究所,2015,中國“十三五”節能規劃研究
2. 住房城鄉建設部,2017,建築業發展“十三五”規劃
3. 住房城鄉建設部,2017,建築節能與綠色建築發展“十三五”規劃
4. 林憲德,建築產業碳足跡,詹氏書局,2018。
5. 內政部統計處,2017,第37週內政統計通報
6. 內政部營建署,2017,104年住宅狀況抽樣調查
7. 台灣電力公司,2018,電費歷年平均單價
8. 經濟部能源局,2016,105年度燃料燃燒CO2排放統計與分析
9. 行政院環保署,2010,產品與服務碳足跡計算指引
10. 鄭家尹,2016,營建工程碳足跡分析-以建築結構為例,國立成功大學建築研究所碩士論文。
11. 溫善政,2013,建築物施工暨營運階段碳足跡探討-以嘉創中心為例,中華大學營建管理學系碩士論文。
12. 翁郁琇,2017,小型木構造構築過程記錄與碳足跡探討-以台灣科技大學永續智慧校園資訊展示中心為例,國立台灣科技大學建築系碩士論文。
13. 林弘傑,2016,建築碳足跡與綠建築標章評估之關聯性研究 -以透天住宅建築為例,逢甲大學建築系碩士論文。
14. 簡佑哲,2018,新建建築工程減碳措施效益評估之研究 -以國立臺北科技大學精勤樓為例,國立臺北科技大學建築系建築與都市設計碩士論文。
15. 蕭玉珍,2017,校園宿舍永續發展與碳足跡盤查之研究,國立臺北科技大學土木工程系土木與防災碩士論文。
16. 彭添旺,2019,不同構造建築物碳足跡評估比較分析,國立中興大學環境工程學系碩士學位論文。
17. 蔡育昇,2017,以生命週期評估方法探討高層木構造建築的可行性-比較木構造與RC構造集合住宅的環境效益,國立成功大學建築研究所碩士論文。
18. 陳薇安,2015,辦公建築外殼設計影響碳排放量的綜合評估,國立成功大學建築研究所碩士論文。
19. 張堯棟.,2013,綠建築生命週期環境衝擊分析暨考量碳排放量之成本效益評估,台灣大學工業工程學研究所論文
20. 楊詩弘, 松元建三, 野城智也, 中村良和, & 西本賢二. (2004). 戸建住宅の生産プロセスにおける使用エネルギー評価方法に関する基礎的研究. 日本建築学会計画系論文集, 69(585), 141-148.
21. Climate Change 2007, the Fourth Assessment Report (AR4) of the United Nations Intergovernmental Panel on Climate Change
22. Conti, J., Holtberg, P., Diefenderfer, J., LaRose, A., Turnure, J. T., & Westfall, L. (2016). International energy outlook 2016 with projections to 2040 (No. DOE/EIA-0484 (2016)). USDOE Energy Information Administration (EIA), Washington, DC (United States). Office of Energy Analysis.
23. Pearce, A. R., & Ahn, Y. H. (2017). Sustainable buildings and infrastructure: paths to the future. Routledge.
24. Zhang, Y., Bai, X., Mills, F. P., & Pezzey, J. C. (2018). Rethinking the role of occupant behavior in building energy performance: A review. Energy and Buildings.
25. Dan, D., Tanasa, C., Stoian, V., Brata, S., Stoian, D., Gyorgy, T. N., & Florut, S. C. (2016). Passive house design—An efficient solution for residential buildings in Romania. Energy for sustainable development, 32, 99-109.
26. Bogenstätter, U. (2000). Prediction and optimization of life-cycle costs in early design. Building Research & Information, 28(5-6), 376-386.
27. Lin, Y. K., Maharani, A. T., Chang, F. T., & Wang, Y. C. (2019). Mortality and morbidity associated with ambient temperatures in Taiwan. Science of The Total Environment, 651, 210-217.
28. Hajat, S., Vardoulakis, S., Heaviside, C., & Eggen, B. (2014). Climate change effects on human health: projections of temperature-related mortality for the UK during the 2020s, 2050s and 2080s. J Epidemiol Community Health, 68(7), 641-648.
29. Porritt, S., Shao, L., Cropper, P., & Goodier, C. (2011). Adapting dwellings for heat waves. Sustainable Cities and Society, 1(2), 81-90.
30. Biswas, W. K. (2014). Carbon footprint and embodied energy consumption assessment of building construction works in Western Australia. International Journal of Sustainable Built Environment, 3(2), 179-186.
31. U.S. Department of Energy(2019)EnergyPlus Version 9.1.0 Documentation, Illinois.
32. Stadler M., Firestone R.,Curtil D., and Marnay C.(2006)On-Site Generation Simulation with EnergyPlus for Commercial Buildings. the 2006 ACEEE Summer Study on Energy Efficiency in Buildings, May.
33. Chen, T. Y., Burnett, J., & Chau, C. K. (2001). Analysis of embodied energy use in the residential building of Hong Kong. Energy, 26(4), 323-340.
34. Biswas, W. K. (2014). Carbon footprint and embodied energy consumption assessment of building construction works in Western Australia. International Journal of Sustainable Built Environment, 3(2), 179-186.
35. Adalberth, K. (1997). Energy use during the life cycle of buildings: a method. Building and Environment, 32(4), 317-320.
36. Basbagill, J., Flager, F., Lepech, M., & Fischer, M. (2013). Application of life-cycle assessment to early stage building design for reduced embodied environmental impacts. Building and Environment, 60, 81-92.
37. Chau, C. K., Hui, W. K., Ng, W. Y., & Powell, G. (2012). Assessment of CO2 emissions reduction in high-rise concrete office buildings using different material use options. Resources, Conservation and Recycling, 61, 22-34.
38. Tahmasebi, M. M., Banihashemi, S., & Hassanabadi, M. S. (2011). Assessment of the variation impacts of window on energy consumption and carbon footprint. Procedia engineering, 21, 820-828.
39. Menzies, G. F., & Wherrett, J. R. (2005). Windows in the workplace: examining issues of environmental sustainability and occupant comfort in the selection of multi-glazed windows. Energy and buildings, 37(6), 623-630.
40. Zhang, W., Lu, L., Peng, J., & Song, A. (2016). Comparison of the overall energy performance of semi-transparent photovoltaic windows and common energy-efficient windows in Hong Kong. Energy and Buildings, 128, 511-518.
41. Grynning, S., Gustavsen, A., Time, B., & Jelle, B. P. (2013). Windows in the buildings of tomorrow: Energy losers or energy gainers?. Energy and buildings, 61, 185-192.
42. Ye, H., Wang, K., Zhao, X., Chen, F., Li, X., & Pan, L. (2011). Relationship between construction characteristics and carbon emissions from urban household operational energy usage. Energy and Buildings, 43(1), 147-152.
43. Aldy, J. E. (2015). Pricing climate risk mitigation. Nature Climate Change, 5(5), 396-398.
44. Edenhofer, O., Jakob, M., Creutzig, F., Flachsland, C., Fuss, S., Kowarsch, M., ... & Steckel, J. C. (2015). Closing the emission price gap. Global environmental change, 31, 132-143.
45. Metcalf, G. E., & Weisbach, D. (2009). The design of a carbon tax. Harv. Envtl. L. Rev., 33, 499.
46. Schmalensee, R., & Stavins, R. (2015). Lessons learned from three decades of experience with cap-and-trade (No. w21742). National Bureau of Economic Research.
47. Ramstein, C., Dominioni, G., Ettehad, S., Lam, L., Quant, M., Zhang, J., ... & Merusi, C. (2019). State and Trends of Carbon Pricing 2019. The World Bank.
48. Barrios, G., Huelsz, G., Rechtman, R., & Rojas, J. (2011). Wall/roof thermal performance differences between air-conditioned and non air-conditioned rooms. Energy and Buildings, 43(1), 219-223.
49. Schwartz, Y., Raslan, R., & Mumovic, D. (2016). Implementing multi objective genetic algorithm for life cycle carbon footprint and life cycle cost minimisation: A building refurbishment case study. Energy, 97, 58-68.
50. Lai, C. M., & Wang, Y. H. (2011). Energy-saving potential of building envelope designs in residential houses in Taiwan. Energies, 4(11), 2061-2076.
51. CHEN, P. H., & LI, Y. C. (2014). BIM-BASED INTEGRATION OF CARBON DIOXIDE EMISSION AND COST EFFECTIVENESS FOR BUILDINGS IN TAIWAN.