| 研究生: |
吳彥柔 Wu, Yen-Jou |
|---|---|
| 論文名稱: |
含菠酯基單體-環糊精包容錯合物之製備及特性探討 Fabrication and Characterization of Inclusion Complex of Bornyl-4-(6-acryloyloxyhexyloxy)-benzoate Threaded with β-Cyclodextrin |
| 指導教授: |
劉瑞祥
Liu, Jui-Hsiang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 93 |
| 中文關鍵詞: | 超分子 、自組裝 、主客體化學 、包容錯合物 、環糊精 |
| 外文關鍵詞: | supramolecule, self-assembly, host-guest chemistry, inclusion complex, cyclodextrin |
| 相關次數: | 點閱:114 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究合成一新穎性含光學活性菠酯基單體(Bornyl-4-(6-acryloyloxyhexyloxy) benzoate),並利用其與β-環糊精形成包容錯合物來作一系列的特性探討。由1H-NMR分析得知,一光學活性單體可與兩到三個β-環糊精形成包容錯合物。此包容錯合物更進一步以FTIR、DSC、TGA、XRD、SEM及13C CP/MAS NMR鑑定。而由於光學活性單體幾乎被包合在β-環糊精中,因此即使加了熱起始劑(Benzoyl peroxide) 或光起始劑再加熱或照光也不能聚合。
於TEM下觀察,此包容錯合物在不同混合溶劑下將自組裝成不同的結構。在pyridine/water共溶劑中,包容錯合物呈現蝴蝶似結構;在pyridine/methanol混合溶液中,為棒狀結構;在pyridine/acetone系統則是球狀結構。且於pyridine/water與pyridine/methanol兩系統中,一旦共溶劑的比例達到1,包容錯合物的結構都將變為圓球形的結構。另一方面,以SEM、POM觀察,包容錯合物在溶劑中也可自組裝成為微米級結構,並在各個共溶劑系統,都是以薄片或棒狀結構方式呈現。
A novel chiral monomer containing bornyl group (Bornyl-4-(6-acryloyloxyhexyloxy) benzoate) was synthesized. The chiral monomer was then threaded with β-cyclodextrin. Formation of inclusion complexes was confirmed and characterized using FTIR, 1H-NMR, DSC, TGA, XRD, SEM, and 13C-CP/MAS NMR. From the result of 1H-NMR, it shows that two or three β-cyclodextrin molecules were threaded onto the synthesized chiral monomer. However, due to the stereo-hindrance of the threaded β-cyclodextrins, both thermo and photo polymerization were not observed.
Self-assembly of the synthesized inclusion complexes in various solvents were studied using TEM. In pyridine/water and pyridine/methanol cosolvents, butterfly-like and rod-like self-assembled structures were observed, respectively. Furthermore, in pyridine/acetone system, a ball-like structure was observed. Solvent ratio effect on the self-assembly of inclusion complex was investigated. It was found that in both pyridine/water and pyridine/methanol systems, self-assembled constructions of the systems changed to ball-like when the ratio of cosolvent reached 1. Micro-scaled self-assembled structure of the inclusion complexes was investigated using SEM and POM as well.
1. 劉育,張衡益,李莉,王浩編著,奈米超分子化學,化學工業出版社,2004。
2. P. J. Cragg., “A Practical Guide to Supramolecular Chemistry”, John Wiley & Sons, Chichester, Hoboken, NJ, 2005.
3. J. W. Steed, J. L. Atwood., “Supramolecular Chemistry”, Wiley Chichester, New York, 2000.
4. L. Brunsveld, B. J. B. Folmer, E. W. Meijer, and R. P. Sijbesma, “Supramolecular Polymers”, Chem. Rev., 101, 4071-4097, 2001.
5. J. W. Steed, D. R. Turner, K. J. Wallace, “Core Concepts in Supramolecular Chemistry and Nanochemistry”, John Wiley, Hoboken, Chichester, England, NJ, 2007.
6. Y. Inoue, P. Kuad, Y. Okumura, Y. Takashima, H. Yamaguchi, and A. Harada, “Thermal and Photochemical Switching of Conformation of Poly(ethylene glycol)-Substituted Cyclodextrin with an Azobenzene Group at the Chain End”, J. Am. Chem. Soc., 129, 6396-6397, 2007.
7. P. Kuad, A. Miyawaki, Y. Takashima, H. Yamaguchi, and A. Harada, “External Stimulus-Responsive Supramolecular Structures Formed by a Stilbene Cyclodextrin Dimer”, J. Am. Chem. Soc., 129, 12630 -12631, 2007.
8. H. Murakami, A. Kawabuchi, R. Matsumoto, T. Ido, and N. Nakashima, “A Multi-Mode-Driven Molecular Shuttle: Photochemica -lly and Thermally Reactive Azobenzene Rotaxanes”, J. Am. Chem. Soc., 127, 15891-15899, 2005.
9. J. M. Casas-Solvas, E. Ortiz-Salmerón, I. Fernández, L. Garcίa -Fuentes, F. Santoyo-González, and A. Vargas-Berenguel, “Ferrocene -β-Cyclodextrin Conjugates: Synthesis, Supramolecular Behavior, and Use as Electrochemical Sensors”, Chem. Eur. J., 15, 8146-8162, 2009.
10. L. Ren, L. He, T. Sun, X. Dong, Y. Chen, J. Huang, C. Wang, “Dual-Responsive Supramolecular Hydrogels from Water-Soluble PEG-Grafted Copolymers and Cyclodextrin”, Macromol. Biosci., 9, 902-910, 2009.
11. H. Goto, Y. Furusho, and E. Yashima, “Supramolecular Control of Unwinding and Rewinding of a Double Helix of Oligoresorcinol Using Cyclodextrin/Adamantane System”, J. Am. Chem. Soc., 129, 109-112, 2007.
12. H. Yamaguchi, R. Kobayashi, Y. Takashima, A. Hashidzume, and A. Harada, “Self-Assembly of Gels through Molecular Recognition of Cyclodextrins: Shape Selectivity for Linear and Cyclic Guest Molecules”, Macromolecules, 44, 2395-2399, 2011.
13. H. S. Kwak, C. S. Jung, S. Y. Shim, and J. Ahn, “Removal of Cholesterol from Cheddar Cheese by β-Cyclodextrin”, J. Agric. Food Chem., 50, 7293-7298, 2002.
14. A. Vyas, S. Saraf, S. Saraf, “Cyclodextrin Based Novel Drug Delivery Systems”, J. Incl. Phenom. Macrocycl. Chem., 62, 23-42, 2008.
15. J. H. Liu, H. J. Hung, and A. Harada, “Fabrication and Chara -cterization of a Novel Inclusion Complex of Chiral Monomer Derived from (+)-Camphor with β-Cyclodextrins”, Langmuir, 24, 7442-7449, 2008.
16. J. H. Liu, Y. H. Chiu, and T. H. Chiu, “Fabrication and Char -acterization of Self-Assembled β-Cyclodextrin Threaded Monomers and Induced Helical Polymers”, Macromolecules, 42, 3715-3720, 2009.
17. L. F. Lindoy and I. M. Atkinson, “Self-assembly in Supramolecular Systems”, Royal Society of Chemistry, Cambridge, UK, 2000.
18. G. R. Desiraju, “The Crystal as a Supramolecular Entity”, Wiley, Chichester, UK, 1996.
19. P. Espinet, M. A. Esteruelas, L. A. Oro, J. L. Serrano and E. Sola, “Transiton-metal Liquid-crystals-Advanced Materials within the Reach of the Coordination Chemist”, Coord. Chem. Rev., 117, 215-274, 1992.; R. Bissell and N. Boden, “Liquid Crystals Display New Potential”, Chem. Br., 31, 38-41, 1995.
20. P. F. Knowles and P. G. Stockley, “Lessons from Nature”, Chem. Br., 31, 27-35, 1995.
21. C. D. Bain and S. D. Evans, “Laying It on Thin”, Chem. Br., 31, 46-48, 1995.
22. T. Shimizu, M. Masuda, and H. Minamikawa, “Supramolecular Nanotube Architectures Based on Amphiphilic Molecules”, Chem. Rev., 105, 1401-1443, 2005.
23. M. V. D. Boogaard, “Cyclodextrin-containing Supramolecular Structures-from Pseudo-polyrotaxanes towards Molecular Tubes, Insulated Molecular Wires and Topological Networks”, University of Groningen, the Netherlands, 2003.
24. Y. S. Lee, “Self-assembly and Nanotechnology: A Force Balance Approach”, John Wiley & Sons, Hoboken, N.J., 2008.
25. C. A. Stanier, M. J. O’Connell, W. Clegg and H. L. Anderson, “Synthesis of Fluorescent Stilbene and Tolan Rotaxanes by Suzuki Coupling”, Chem. Commun., 493-494, 2001.
26. G. Wenz, B. H. Han, and A. Müller, “Cyclodextrin Rotaxanes and Polyrotaxanes”, Chem. Rev., 106, 782-817, 2006.
27. F. Aricó, J. D. Badjic, S. J. Cantrill, A. H. Flood, K. C. F. Leung, Y. Liu, and J. F. Stoddart, “Templated Synthesis of Interlocked Molecules”, Top. Curr. Chem., 249, 203-259, 2005.
28. A. B. Braunschweig, B. H. Northrop and J. F. Stoddart, “Structural Control at the Organic–solid Interface”, J. Mater. Chem., 16, 32-44, 2006.
29. W. S. Jeon, A. Y. Ziganshina, J. W. Lee, Y. H. Ko, J. K. Kang, C. Lee, and K. Kim, “A [2]Pseudorotaxane-Based Molecular Machine: Reversible Formation of a Molecular Loop Driven by Electrochemical and Photochemical Stimuli”, Angew. Chem., 115, 4231-4234, 2003.
30. M. Ceccarelli, F. Mercuri, D. Passerone, and M. Parrinello, “The Microscopic Switching Mechanism of A [2]Catenane”, J. Phys. Chem. B, 109, 17094-17099, 2005.
31. K. A. Connors, “The Stability of Cyclodextrin Complexes in Solution”, Chem. Rev., 97, 1325-1357, 1997.
32. E. M. M. D. Valle, “Cyclodextrins and Their Uses: A Review”, Process Biochemistry, 39, 1033-1046, 2004.
33. 何仲貴編著,“環糊精包合技術”,人民衛生出版社,2008。
34. A. R. Hedges, “Industrial applications of cyclodextrins”, Chem. Rev., 98, 2035-2044, 1998.
35. S. Yamamoto, H. Kurihara, T. Mutoh, X. H. Xing, and H. Unno, “Cholesterol Recovery from Inclusion Complex of β-cyclodextrin and Cholesterol by Aeration at Elevated Temperatures”, Biochemical Engineering Journal, 22, 197-205, 2005.
36. H. S. Kwak, C. S. Jung, S. Y. Shim, and J. Ahn, “Removal of Cholesterol from Cheddar Cheese by β-cyclodextrin”, J. Agric. Food Chem., 50, 7293-7298, 2002.
37. J. Li, A. Harada, and M. Kamachi, “Sol-gel Transition during Inclusion Complex Formation between α-cyclodextrin and High Molecular Weight Poly(ethylene glycol)s in Aqueous Solution”, Polymer Journal, 26, 1019-1026, 1994.
38. J. Wang, L. Li, Y. Zhu, P. Liu and X. Guo, “Hydrogels Assembled by Inclusion Complexation of Poly(ethylene glycol) with Alpha -cyclodextrin”, Asia-Pac. J. Chem. Eng., 4, 544-550, 2009.
39. X. Liao, G. Chen, X. Liu, W. Chen, F. Chen, and M. Jiang, “Photoresponsive Pseudopolyrotaxane Hydrogels Based on Compe -tition of Host–Guest Interactions”, Angew. Chem. Int. Ed., 49, 4409 -4413, 2010.
40. Y. L. Zhao and J. F. Stoddart, “Azobenzene-Based Light-Responsive Hydrogel System”, Langmuir, 25, 8442-8446, 2009.
41. Y. Wang, J. F. Wong, X. Teng, X. Z. Lin, and H. Yang, ““Pulling” Nanoparticles into Water: Phase Transfer of Oleic Acid Stabilized Monodisperse Nanoparticles into Aqueous Solutions of -Cyclo -dextrin”, Nano Lett., 3, 1555-1559, 2003.
42. Q. Liu, C. Li, T. Yang, T. Yi, and F. Li, ““Drawing” Upconversion Nanophosphors into Water through Host–guest Interaction”, Chem. Commun., 46, 5551-5553, 2010.
43. Y. Inoue, M. Miyauchi, H. Nakajima, Y. Takashima, H. Yamaguchi, and A. Harada, “Self-Threading of a Poly(ethylene glycol) Chain in a Cyclodextrin-Ring: Control of the Exchange Dynamics by Chain Length”, J. Am. Chem. Soc., 128, 8994-8995, 2006.
44. K. Yamauchi, A. Miyawaki, Y. Takashima, H. Yamaguchi, and A. Harada, “A Molecular Reel: Shuttling of a Rotor by Tumbling of a Macrocycle”, J. Org. Chem., 75, 1040-1046, 2010.
45. M. A. Bayomi, K. A. Abanumay, and A. A. Al-Angary, “Effect of Inclusion Complexation with Cyclodextrins on Photostability of Nifedipine in Solid State”, International Journal of Pharmaceutics, 243, 107-117, 2002.
46. S. S. Braga, I. S. Gonçalves, E. Herdtweck, and J. J. C. Teixeira-Dias, “Solid state inclusion compound of S-ibuprofen in β-cyclodextrin”, New J. Chem., 27, 597-601, 2003.
47. H. J. Schneider, F. Hacket, and V. Rüdiger, “NMR Studies of Cyclodextrins and Cyclodextrin Complexes”, Chem. Rev., 98, 1755 -1785, 1998.
48. Y. Liu, Y. W. Yang, Y. Chen, and H. X. Zou, “Polyrotaxane with Cyclodextrins as Stoppers and Its Assembly Behavior”, Macromo -lecules, 38, 5838-5840, 2005.
49. L. Huang, E. Allen, A. E. Tonelli, “Polyrotaxane with Cyclodextrins as Stoppers”, Polymer, 40, 3211-3221, 1999.
50. Y. Gao, X. Zhao, B. Dong, L. Zheng, N. Li, and S. Zhang, “Inclusion Complexes of β-Cyclodextrin with Ionic Liquid Surfactants”, J. Phys. Chem. B, 110, 8576-8581, 2006.
51. H. Okumura, Y. Kawaguchi, and A. Harada, “Preparation and Characterization of Inclusion Complexes of Poly(dimethylsiloxane)s with Cyclodextrins”, Macromolecules, 34, 6338-6343, 2001.
52. T. Uyar, A. El-Shafei, X. Wang, J. Hacaloglu, and A. E. Tonelli, “The Solid Channel Structure Inclusion Complex Formed Between Guest Styrene and Host γ-Cyclodextrin”, Journal of Inclusion Phenomena and Macrocyclic Chemistry, 55, 109–121, 2006.
53. S. Lai, E. Locci, A. Piras, S. Porcedda, A. Lai, and B. Marongiu, “Imazalil-cyclomaltoheptaose (β-cyclodextrin) Inclusion Complex: Preparation by Supercritical Carbon Dioxide and 13C CPMAS and 1H NMR Characterization”, Carbohydrate Research, 338, 2227-2232, 2003.
54. H. Asanuma, M. Kakazu, M. Shibata, T. Hishiya and M. Komiyama, “Molecularly imprinted polymer of β-cyclodextrin for the efficient recognition of cholesterol”, Chem. Commun., 1971-1972, 1997.
55. H. Asanuma, M. Kakazu, M. Shibata, T. Hishiya and M. Komiyamas, “Synthesis of molecularly imprinted polymer of β-cyclodextrin for the efficient recognition of cholesterol”, Supramolecular Science, 5, 417-421, 1998.