簡易檢索 / 詳目顯示

研究生: 陳衍文
Chen, Yen-Wen
論文名稱: 低真空環境下濕度對印刷電路板材料機械性質影響之研究
Study on Hygro-Mechanical Behavior of Printed Circuit Board Materials in Rough Vacuum Environment
指導教授: 趙隆山
Chao, Long-Sun
學位類別: 碩士
Master
系所名稱: 工學院 - 工程科學系碩士在職專班
Department of Engineering Science (on the job class)
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 96
中文關鍵詞: 分層爆米花低真空濕氣相對濕度機械性質
外文關鍵詞: Rough vacuum, Delamination, Moisture, Mechanical property, Relative humidity
相關次數: 點閱:163下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 水分含量是造成電子構裝基板脫層主要因子之一,本文採用低真空除濕之方式降低基板內水分並進行相關實驗。針對構裝基板常用之有機材料(FR4)、樹脂(BT)與軟式電路板(PI)進行討論,探討低真空中對基板吸收水分後其機械性質變化,並以嵌合曲線(Curve Fitting)描述各材料在特定濕度下的非線性應力.應變關係方程式,建立材料與濕度之相關特性資料。
    實驗結果顯示,代表水分含量之相對濕度會影響材料的機械性質,其楊氏模數和極限強度、特性常數k及硬化指數n會隨著濕度的上升而下降。本文所設計之低真空方式則具有抑制基板材料之吸濕的效果,可控制材料內水分含量並維持其機械性質之效果

    Moisture content is one of the primary factors for the delamination of printed circuit board. In this paper, the effects of humidity and rough vacuum on the moisture content of printed circuit board and its resulting mechanical properties are investigated. Fiberglass/epoxy laminate (FR-4), Bismaleimide Triacine (BT) and Polyimides (PI) are used as the testing materials, which are commonly used to manufacture printed circuit board. In the study, the moisture content data for different humidity under the circumstance of rough vacuum are established and the curve fitting formulas are used to describe the corresponding stress-strain relationships. The experimental results indicate that the amount of moisture content in the printed circuit board will affect the mechanical properties. The Yong’s modulus, strength limit, character constant (k) and hardening exponent (n) decrease as the moisture content increases. In this work, the designed container of rough vacuum could suppress the moisture absorption of the printed circuit board. Accordingly, it could control the moisture content in the printed circuit board and maintain the desired mechanical properties.

    摘 要 .................................................................................. I Abstract..................................................................................... II 誌 謝 .................................................................................. III 目 錄 ................................................................................. IV 表 目 錄 ................................................................................. VII 圖 目 錄 ................................................................................. IX 符號說明 ................................................................................. XIII 第一章 緒 論 ................................................................. 1 1.1 前 言 ................................................................... 1 1.2 文獻回顧 ................................................................... 3 1.3 研究動機 ................................................................... 7 1.4 組織章節 ................................................................... 7 第二章 濕氣與真空理論原理 ............................................... 8 2.1 濕氣吸收 ................................................................... 8 2.1.1 構裝體內濕氣擴散 .............................................. 8 2.1.2 構裝體濕熱效應與應力分析 ................................ 10 2.2 真空理論 .................................................................. 11 2.2.1 氣體動力學 .......................................................... 12 2.2.2 氣體平均自由動徑(mean free path) ...................... 12 2.2.3 真空中的釋氣及吸附作用 ..................................... 13 2.2.4 絕熱膨脹 .......................................................... 16 第三章 實驗設備與方法 .................................................... 17 3.1 實驗方法 ................................................................. 17 3.2 實驗設備 ................................................................. 18 3.2.1 熱風循環式烤箱 .................................................. 18 3.2.2 精密天平 ............................................................. 18 3.2.3 真空儲存桶 ......................................................... 18 3.2.4 加壓馬達 ............................................................. 20 3.2.5 溫濕度表及數字壓力表 ....................................... 20 3.2.6 小型儲存箱及乾燥劑 ........................................... 20 3.2.7 萬能材料試驗機 ................................................... 21 3.3 實驗材料簡介 ............................................................. 21 3.3.1環氧樹脂基板 ....................................................... 21 3.3.2 PI樹脂基板 .......................................................... 21 3.3.3 BT樹脂基板 ......................................................... 22 3.4 實驗過程 .................................................................... 22 3.4.1漏氣測試 ............................................................... 22 3.4.2真空儲存桶釋氣現象及乾燥劑率定 ....................... 22 3.4.3 去濕過程 .............................................................. 23 3.4.4 吸濕過程 .............................................................. 23 3.4.5 低真空吸濕過程 ................................................... 24 3.4.6 量測過程 .............................................................. 24 3.4.7 材料曲線分析 ........................…............................... 25 3.4.7.1 Power Law .........................…............................. 25 第四章 結果與討論 .................................................................. 27 4.1恆溫恆溼實驗討論 ........................................................... 27 4.2 材料靜態拉升實驗討論 .................................................. 28 4.2.1 FR.4 試片 ................................................................ 28 4.2.2 BT 試片 ................................................................... 29 4.2.3 PI 試片 .................................................................... 31 第五章 結論 ............................................................................. 33 參考文獻 ...........................................................….................... 34 圖表附件 .................................................................................. 38 表2.1 各真空壓力範圍內的特微(以20度C之空氣為例) ... 39 表3.1 真空桶內0.1.1.0atm釋氣現象(24℃,40%R.H.,真空後靜置1小時) .............................................................. 40 表3.2 真空桶內微壓滲透率(24℃,50%R.H, 168hrs) ............ 40 表3.3 真空桶內微壓滲透率(24℃, 50%R.H, 168hrs, 0.5g 乾燥劑) ...................................................................... 41 表3.4 FR.4 去濕過程(48小時) . .......................................... 41 表3.5 PI 去濕過程(48小時) ................................................ 42 表3.6 BT 去濕過程(48小時) ............................................... 42 表4.1 飽和濕氣含量比較表(40%.70%R.H, 24℃,常壓, 168hrs) ...................................................................... 43 表4.2 飽和濕氣含量比較表(40%.70%R.H, 24℃,低真空, 168hrs) ...................................................................... 43 表4.3 低真空抑制濕氣含量 (40%.70%R.H, 24℃,168hrs).. 44 表4.4 抑制吸濕含量比例 (40%.70%R.H, 24℃,168hrs)..... 44 表4.5 FR.4 於24℃, 40%R.H, 常壓, 機械性質 ................ 45 表4.6 FR.4 於24℃, 50%R.H, 常壓, 機械性質 ................ 45 表4.7 FR.4 於24℃, 60%R.H, 常壓, 機械性質 ................ 45 表4.8 FR.4 於24℃, 70%R.H, 常壓, 機械性質 ................ 46 表4.9 FR.4 於24℃, 40%R.H, 低真空, 機械性質 ............. 46 表4.10 FR.4 於24℃, 50%R.H, 低真空, 機械性質 ............. 46 表4.11 FR.4 於24℃, 60%R.H, 低真空, 機械性質 ............. 47 表4.12 FR.4 於24℃, 70%R.H, 低真空, 機械性質 .............. 47 表4.13 PI於24℃, 40%R.H, 常壓, 機械性質 ....................... 48 表4.14 PI於24℃, 50%R.H, 常壓, 機械性質 ....................... 49 表4.15 PI於24℃, 60%R.H, 常壓, 機械性質 ....................... 50 表4.16 PI於24℃, 70%R.H, 常壓, 機械性質 ....................... 51 表4.17 PI於24℃, 40%R.H, 低真空, 機械性質 ................... 52 表4.18 PI於24℃, 50%R.H, 低真空, 機械性質 ................... 53 表4.19 PI於24℃, 60%R.H, 低真空, 機械性質 ................... 54 表4.20 PI於24℃, 70%R.H, 低真空, 機械性質 ................... 55 表4.21 BT於24℃, 40%R.H, 常壓, 機械性質 ...................... 56 表4.22 BT於24℃, 50%R.H, 常壓, 機械性質 ...................... 56 表4.23 BT於24℃, 60%R.H, 常壓, 機械性質 ...................... 56 表4.24 BT於24℃, 70%R.H, 常壓, 機械性質 ...................... 57 表4.25 BT於24℃, 40%R.H, 低真空, 機械性質 .................. 57 表4.26 BT於24℃, 50%R.H, 低真空, 機械性質 .................. 57 表4.27 BT於24℃, 60%R.H, 低真空, 機械性質 .................. 58 表4.28 BT於24℃, 70%R.H, 低真空, 機械性質 .................. 58 圖1.1 脫層(Delamination) .................................................. 59 圖1.2 爆米花現象( Popcorn ) ............................................. 59 圖1.3 氣壓與抽氣時間關係圖 ............................................ 60 圖2.1 位能曲線示意圖 ...................................................…. 61 圖2.2 Langmuir之吸附等溫圖 …........................................ 61 圖3.1 熱風循環式烤箱 ..............…...................................... 62 圖3.2 精密天平 ...........................….................................... 62 圖3.3 自製低真空儲存桶構造圖1 ..….................................. 63 圖3.4 自製低真空儲存桶構造圖2 ....…................................ 63 圖3.5 自製低真空儲存桶實品 ............…............................. 64 圖3.6 加壓馬達及浸水試驗 ..................…........................... 64 圖3.7 溫濕度表 .......................................…........................ 65 圖3.8 數字壓力表(Dwyer.DPGA.00) ..........…..................... 66 圖3.9 小型儲存箱及乾燥劑 .........................….................... 66 圖3.10 萬能材料試驗機 ......................….............................. 67 圖3.11 基板材料試片尺寸示意圖 ..........…........................... 67 圖3.12 基板材料試片圖 ..........................….......................... 68 圖3.13 Power law 應力.應變曲線圖 .........…....................... 68 圖3.14 真空桶內0.1.1.0atm, 相對濕度變化圖(24℃,40%R.H,真空後靜置24小時) …..................... 69 圖3.15 真空桶內微壓滲透率 (24℃,50%R.H.168hrs) ......…. 69 圖3.16 真空桶內微壓滲透率(24℃, 50%R.H, 168hrs, 0.5g乾燥劑) .......................................................................... 70 圖3.17 試片材料損失水份表(48 小時) ................................... 70 圖4.1 FR.4 (40%.70%R.H) . 24℃, 常壓, 168hrs ................ 71 圖4.2 PI (40%.70%R.H) . 24℃, 常壓, 168hrs .................... 71 圖4.3 BT (40%.70%R.H) . 24℃,常壓, 168hrs ..................... 72 圖4.4 FR.4(40%.70%R.H).24℃, 低真空,168hrs ................. 72 圖4.5 PI (40%.70%R.H) .24℃,低真空, 168hrs .................... 73 圖4.6 BT (40%.70%R.H).24℃,低真空, 168hrs .................... 73 圖4.7 試片材料 40%R.H, 24℃, 常壓/低真空, 吸濕過程 ... .. 74 圖4.8 試片材料 50%R.H, 24℃, 常壓/低真空, 吸濕過程 ... 74 圖4.9 試片材料 60%R.H, 24℃, 常壓/低真空, 吸濕過程 ... 75 圖4.10 試片材料 70%R.H, 24℃, 常壓/低真空, 吸濕過程 ... 75 圖4.11 FR.4 40%R.H, 24℃, 常壓, 應力-應變曲線圖 ........ 76 圖4.12 FR.4 50%R.H, 24℃, 常壓, 應力-應變曲線圖 ........ 76 圖4.13 FR.4 60%R.H, 24℃, 常壓, 應力-應變曲線圖 ........ 77 圖4.14 FR.4 70%R.H, 24℃, 常壓, 應力-應變曲線圖 ........ 77 圖4.15 FR.4 40%R.H, 24℃, 低真空, 應力-應變曲線圖 ..... 78 圖4.16 FR.4 50%R.H, 24℃, 低真空, 應力-應變曲線圖 ..... 78 圖4.17 FR.4 60%R.H, 24℃, 低真空, 應力-應變曲線圖 ..... 79 圖4.18 FR.4 70%R.H, 24℃, 低真空, 應力-應變曲線圖 ..... 79 圖4.19 FR.4 試片最大應力與相對濕度關係圖 .................... 80 圖4.20 FR.4 試片楊氏模數與相對濕度關係圖 .................... 80 圖4.21 FR.4 試片於Instron 萬能材料試驗機上夾持照片 ... 81 圖4.22 FR.4 試片於Instron 萬能材料試驗機上斷裂照片 ... 81 圖4.23 PI 40%R.H, 24℃, 常壓, 應力-應變曲線圖 ........... 82 圖4.24 PI 50%R.H, 24℃, 常壓, 應力-應變曲線圖 ........... 82 圖4.25 PI 60%R.H, 24℃, 常壓, 應力-應變曲線圖 ........... 83 圖4.26 PI 70%R.H, 24℃, 常壓, 應力-應變曲線圖 ........... 83 圖4.27 PI 40%R.H, 24℃, 低真空, 應力-應變曲線圖 ........ 84 圖4.28 PI 50%R.H, 24℃, 低真空, 應力-應變曲線圖 ........ 84 圖4.29 PI 60%R.H, 24℃, 低真空, 應力-應變曲線圖 ........ 85 圖4.30 PI 70%R.H, 24℃, 低真空, 應力-應變曲線圖 ........ 85 圖4.31 PI 試片彈性極限強度與相對濕度關係圖 .................. 86 圖4.32 PI 試片楊氏模數與相對濕度關係圖 ......................... 86 圖4.33 PI 試片0.2%截距降伏強度與相對濕度關係圖 ........ 87 圖4.34 PI 試片k與相對濕度關係圖 ................................... 87 圖4.35 PI 試片n與相對濕度關係圖 ................................... 88 圖4.36 PI 試片於Instron 萬能材料試驗機上夾持照片 ...... 88 圖4.37 PI 試片於Instron 萬能材料試驗機上斷裂照片 ...... 89 圖4.38 BT 40%R.H, 24℃, 常壓, 應力-應變曲線圖 ......... 89 圖4.39 BT 50%R.H, 24℃, 常壓, 應力-應變曲線圖 ......... 90 圖4.40 BT 60%R.H, 24℃, 常壓, 應力-應變曲線圖 .......... 90 圖4.41 BT 70%R.H, 24℃, 常壓, 應力-應變曲線圖 .......... 91 圖4.42 BT 40%R.H, 24℃, 低真空, 應力-應變曲線圖 ....... 91 圖4.43 BT 50%R.H, 24℃, 低真空, 應力-應變曲線圖 ....... 92 圖4.44 BT 60%R.H, 24℃, 低真空, 應力-應變曲線圖 ....... 92 圖4.45 BT 70%R.H, 24℃, 低真空, 應力-應變曲線圖 ....... 93 圖4.46 BT 試片彈性極限強度與相對濕度關係圖 ..... ........... 93 圖4.47 BT 試片楊氏模數與相對濕度關係圖 ........ ............... 94 圖4.48 BT 試片k與相對濕度關係圖 .........................…..... 94 圖4.49 BT 試片n與相對濕度關係圖 ..........................….... 95 圖4.50 BT 試片於Instron 萬能材料試驗機上夾持照片 ..... 95 圖4.51 BT 試片於Instron 萬能材料試驗機上斷裂照片 ..... 96

    [1] Liu, S. and Mei, Y., “Behavior of delaminated Plastic IC Packages Subjected to Encapsulation Cooling. Moisture Absorption. And Wave Soldering,” IEEE Transactions on Components, Packaging, and Manufacturing Technology – Part A, Vol.18. issue 3, pp. 634-645, 1995
    [2] Tay, A. A. O. and Lin, T. Y., “Moisture Diffusion and heat Transfer in Plastic IC Packages,” IEEE Transactions on Components and Packaging and Manufacturing Technology – Part A, Vol. 19, issue 2, pp. 186-193, 1996
    [3] Tay, A. A. O. and Lin, T. Y., “Influence of Temperature, Humidity, and Defect Location on Delamination in Plastic IC Packages,” IEEE Transactions on Components and packaging Technology, Vol.22, No. 4, pp. 512-518, 1999.
    [4] Yip, L., “Moisture Sensitivity and Reliability of Plastic Thermally enhanced QFP Packages,” IEEE Transactions on Components, Packaging, and Manufacturing Technology—Part B, Vol. 18, No. 3, pp. 485-490, 1995.
    [5] Yeh, M. K. and Chang, K. C., “Failure Prediction in Plastic Ball Grid Array Electronic Packaging,” InterPACk’99, Hawaii, June 13-18, EEP - Vol. 26-1, pp. 49-474, 1999.
    [6] Ahn, S.H. and Kwon, Y. S. “Popcorn Phenomena in a Ball Grid Array Package,” IEEE Transactions on Components, Packaging, and Manufacturing Technology—Part B, Vol. 18, No. 3, pp. 491-495, 1995.
    [7] Galloway, J. E. and Miles, B. M., “Moisture Absorption and Desorption Predictions for plastic Ball Grid Array Packages,” IEEE Transactions on Components, Packaging, and Manufacturing Technology—Part A, Vol. 20, No. 3, pp. 274-279, 1997.
    [8] Pecht, M.G., “Moisture Sensitivity Characterization of Bulid-Up Ball Grid Array Substrates,” IEEE Transactions on Advanced Packaging, Vol. 22, No. 3, pp. 515-523, 1999.
    [9] Pecht M.G., Ardebili, H., Shukla, A. A., Hagge, J. K. and Jennings, D., “Moisture Ingress into Organic Laminates.” IEEE Transactions on Components and Packaging Technology, Vol. 22, No. 1, pp. 104-110, 1999.
    [10] Richard L. Shook, Timothy R. Conrad, Sriama Sastry, and David B. Steele, “Diffusion Model To Derate Moisture Sensitive surface Mount IC’s for Factory Use Conditions”, IEEE Transactions on Components, Packaging, and Manufacturing Technology-Part C, Vol. 19, No. 2, pp. 110-118, 1996.
    [11] Richard L. Shook, and Jason P. Goodelle, “Handling of Highly-Moisture Sensitive Components-An Analysis of Low-Humidity Containment and Baking Schedules”, IEEE Transactions on Electronics Packaging Manufacturing, Vol. 23, No. 2, pp. 81-86, 2000.
    [12] Sung Yi, Jing Sua Goh, Ji Cheng Yang,” Residual stresses in plastic IC packages during surface mounting process preceded by moisture soaking test”, IEEE Transactions on Components, Packaging, and Manufacturing Technology—Part B, Vol. 20, No.3, pp.247-255, 1997
    [13] 陳威志 “溫溼保存條件及時間變動對PBGA構裝體翹曲影響” 碩士論文, 中山大學機械工程研究所, 2001
    [14] Rao, Y., Shin, S. H. and Wong, C. P., “An Improved Methodology for Determining Temperature Dependent Moduli of Underfill Encapsulants,” IEEE Transactions on Components and Packaging Technology, Vol. 23, No. 3, pp. 434-439, 2000
    [15] Uschitsky, M. and Suhir, E., “Moisture Diffusion in Epoxy Molding Compounds Filled with Particles,” ASME Journal of Electronic Packaging, Vol. 123, pp. 47-51, 2001.
    [16] Wu, S. X., Peng, S., and Yeh, C. P., “ Behaviors of polymeric Materials and Their Effects on High Density PWB,” IEEE Transactions on Components and Packaging Technology, Vol. 23, No. 3, pp. 438-433, 2000.
    [17] Pecht, M. and Wu, X., “Characterization of Polyimides Used in High Density Interconnects,” IEEE Transactions on Components, Packaging, and Manufacturing Technology—part B, Vol. 17, No. 4, pp. 632-639, 1994.
    [18] 鄭路, 常新龍, 趙峰, 張博. “濕熱環境中複合材料吸濕性研究” 纖維複合材料, No.2, pp. 37-39, 2007
    [19] 林鴻穎 “電子構裝材料受濕氣影響機械性質分析” 碩士論文, 清華大學動力機械工程學系固力組, 2001.
    [19] 劉遠中, 陳俊榮, 曾湖興, 徐武雄, “超高真空系統的研究”, 核子科學 21(3) pp. 168, 1985
    [20] 劉遠中, 王德正, 謝澄銀, 陳定全, 徐武雄, 陳俊榮, 曾湖興, 許憲能, “超高真空系統的研究(二)”, 核子科學 22(4) , pp. 272, 1986
    [21] 蘇青森, ”真空技術”, 東華書局, 1985
    [22] J. R. Chen, K. Narushima, and H. Ishimaru, “Thermal outgassing from aluminum alloy vacuum chambers,” J. Vacuum. Sci. Technol. A3 (6) pp. 2188, 1985
    [23] John F. O’Hanlon, “A User’s Guide to Vacuum Technology,” Wiley-Interscience Publication, New York pp. 131, 1980
    [24] John F. O’Hanlon and Jhy-Jer Shieh, “Reduction of aerosol contamination during pumping of a vacuum chamber from atmospheric pressure,” J. Vacuum. Sci. Technol. A9 (5). pp. 2802, 1991
    [25] H.F. Dylla, D. M. Manos, and P. M. LaMarche, “correlation of outgassing of stainless and aluminum with various surface treatments,” J. Vac. Sci. Technol. A11. pp. 2623, 1993
    [26] A. G. Mathewson, J. P. Bacher, K. Booth, R. S. Calder, G. Dominichini, A. Grillot, N. Hilleret, D. Latorre, F. Lenormand, and W. Unterlerchner, “Comparison of chemical cleaning methods of aluminum alloy vacuum chambers for electron storage rings,” J. Vac. Sci. Technol. A7 (1) pp. 77,1989
    [27] Miran Mozetic, “Discharge cleaning with hydrogen plasma,” Vacuum 61 pp. 67-371, 2001
    [28] A. Itoh, Y.Ishikawa, and T. Kawabe, “Reduction of outgassing from stainless-steel surfaces by glow discharge cleaning,” J. Vac. Sci. Technol. A6 (4), 1998.
    [29] J. R. Chen, G. Y. Hsuing, and Y. C. Liu, “Secondary ion mass spectroscopy analysis for aluminum surfaces treated by glow discharge cleaning,” J. Vac. Sci, technol. A13 (3), 1995.
    [30] “CRC Handbook of Chemistry and Physics,” 74 th ed. pp. 9, 1993-1994
    [31] R.A. Nevshupa, J, L. de Segovia, “Outgassing from stainless steel under impact in UHV, “ Vacuum 64 pp. 425-430, 2002
    [32] W. Bock, H. Gnaser, H. Oechsner, “Secondary-neutral and secondary-ion mass spectrometry analysis of TiN-based hard coatings: an assessment of quantification procedures,” Analytic chimica acta 297, pp. 277-283, 1994
    [33] 陳俊榮, 曾湖興, 劉遠中, “鋁合金超高真空系統的研究”, 核子科學 24 (1) pp. 25, 1987
    [34] 謝永福, “溫濕效應對黏彈塑封裝體熱特性之影響分析” 碩士論文, 成大機械工程研究所, 2001
    [35] “真空技術與應用” , 第四章、第八章, 國科會精密儀器發展中心, 新竹,2001
    [36] F. W. Sears and G. L. Salinger, “Thermodynamics, Kinetic theory and statistical thermodynamics,” 3rd, Addison-Wesley, London, 1986
    [37] 中山勝矢(著), 賴耿陽(譯), ”真空技術實務- Vacuum: Technique Engineering”, 復漢出版社, 台北市, 1981
    [38] JESD22-A113E, “Preconditioning of nonhermetic surface mount devices Prior to reliability testing” JESDC standards, Electronic Industries Association, Arlington, pp. 10. March 2006.
    [39] ASTM D3039-00, “Standard Test Method for Tensile Properties of Polymer Matrix Composite Materials” Annual Book of ASTM standards, Vol. 15.03, 2000
    [40] Chen, W. F. and Han, D. J., “Plasticity for structural Engineers”, Ch. 1, Gau Lih, Taipei, 1995.

    下載圖示 校內:立即公開
    校外:2008-09-03公開
    QR CODE