簡易檢索 / 詳目顯示

研究生: 李汶峰
Lee, Wen-Feng
論文名稱: 數位光學暨光點陣列畸變校正應用於高精度無光罩微影曝光
High Precision Maskless Lithography Based on Digital Micromirror Device (DMD) with Distortion Calibration
指導教授: 李永春
Lee, Yung-Chun
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 143
中文關鍵詞: 無光罩微影技術數位微反射鏡畸變補償斜掃描頻閃照明
外文關鍵詞: Maskless lithography, Digital micromirror, Distortion Compensation, Obliquely scanning, Strobe lighting, Photoresist
相關次數: 點閱:143下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文針對一個由紫外光光源、數位微反射鏡裝置 (Digital Micromirror Device, DMD)、與投影成像鏡組組成之數位光學成像系統,提出利用CMOS影像感測器、通焦掃描量測 (Through-focus Scanning)、與影像拼接技術,將距離成像面不同高度下之各個平面上截取到所投射之DMD光點陣列的形貌與能量密度分佈,利用高斯光束 (Gaussian Beam) 的假設進行擬合。量測結果可以得知成像鏡頭的重要光學特徵,包括:場曲特徵、景深、以及光點的畸變現象。
    利用量測所得出之取樣光點畸變資訊,透過單體法 (Simplex Algorithm) 的最佳化計算,推導出能夠敘述整個DMD光點分佈的畸變模型 (Distortion Model)。利用所得到的畸變模型再搭配本論文所開發的斜掃描式拆圖演算法,可以進行無光罩式的光阻曝光與曝光圖形的補正,得到更為精準且不受到畸變現象影響的曝光結果。藉由本論文所開發的光點陣列校正補償進行目標點拆圖演算法,成功在負光阻上製作出複雜的微結構圖形,包括3 μm/3 μm之線寬/間距的光柵圖型,80 μm的太陽圖,10 μm周期的同心圓。 此外還進行了8英寸和270×270 mm^2區域的大面積曝光。在大面積曝光範圍內,包括了線寬為 10 μm,圖形週期為 15 μm的正方圖形陣列;直徑為 7.5 μm,圖形週期為 12.5 μm的圓形陣列;線寬/線距為 100 μm/100 μm 的微流道;線寬/線距為 10 μm/10 μm的對位靶標結構。

    This dissertation proposes a method to accurately determine the coordinates of arrayed ultraviolet (UV) spots which are projected from a digital micromirror device (DMD) through an image projection lens. Each projected UV spot can be modeled mathematically as a Gaussian beam and its optical intensity distribution is measured using a through-focus scanning (TFS) and image stitching (IS) method. The measured Gaussian beam characteristics of the projected array of UV spots provides important information on the DMD-based optical system such as optical distortion, field curvature, and depth of focus. These measured optical characteristics are critical and essential for constructing a DMD-based maskless lithography system.
    Based on the measured distortion information, a distortion model is derived based on the Simplex optimization algorithm. This derived distortion model is then combined with UV patterning algorithms to generate DMD binary images for maskless UV exposure on a photoresist (PR) layer deposited in a substrate. Through exposure experiments, arbitrary patterns were successfully fabricated, including linear gratings with linewidth/spacing of 3μm/3μm, an 80μm sunburst pattern, and concentric circles with a period of 10 μm. Large-area exposures of an 8-inch substrate covering a 270×270 mm² area was also performed. These exposures included square arrays with a linewidth of 10 μm and a period of 15 μm, circular arrays with a diameter of 7.5 μm and a period of 12.5 μm, microchannels with a linewidth-spacing of 100 μm/100 μm, and alignment target structures with a linewidth-spacing of 10 μm/10 μm.

    Abstract I 摘要 II 致謝 III Table of Contents IV Caption of Figures VII List of Tables XII Chapter 1 Introduction 1 1.1 Research Background and Motivation 1 1.2 Background and Literature Review 3 1.3 Dissertation Overviews 10 Chapter 2 Hardware Architecture of Maskless Lithography System 12 2.1 Maskless Lithography System’s Optical Engine 14 2.1.1 Digital Micromirror Device, DMD 15 2.1.2 UV-LED Light Source Module 16 2.1.3 Imaging Projection Lens System 18 2.2 X-Y-Z Motion Stage 20 2.3 Optical Sensing Devices 22 Chapter 3 Optical Characterization of Imaging Lens and Distortion of Projected UV Spots 25 3.1 Projected UV Spot Array Imaging Quality 26 3.1.1 Gaussian Beam Characteristic 26 3.1.2 Optical Distortion 31 3.2 Through-focus Scanning (TFS) Measurement 32 3.2.1 Methodology of Through-Focus Scanning (TFS) 32 3.2.2 Analysis of Imaging Projection Lens Optical Characteristic’s with Through-Focus Scanning 35 3.3 Image Stitching Measurement 52 3.3.1 Image Stitching Method Methodology 53 3.3.2 Analysis of Optical Engine’s Distortion with Image Stitching Method 58 3.4 Summary 67 Chapter 4 Oblique Scanning Method in Maskless Lithography Used on Two-Dimensional UV Patterning 69 4.1 Algorithm for Obliquely Scanning and Step Strobe-Lighting 71 4.1.1 Methodology for Obliquely Scanning and Step Strobe-Lighting 72 4.1.2 Backward Oblique Scanning Method in UV Patterning Algorithm 82 4.1.3 Forward Oblique Scanning Method in UV Patterning Algorithm 87 4.2 Two-Dimensional UV Patterning 91 4.2.1 Evaluation of Both UV Patterning Algorithm 91 4.2.2 Evaluation of Distortion Effect on Maskless Lithography 107 4.2.3 Exposure of Arbitrary 2D Test Pattern 115 Chapter 5 Conclusions and Future Works 136 5.1 Conclusions 136 5.2 Discussion and Future Works 139 Reference 141

    [1] K. Keskinbora, C. Grévent, M. Bechtel, M. Weigand.; E. Goering., A. Nadzeyka, L. Peto, S. Rehbein, G. Schneider, R. Follath, et al, "Ion beam lithography for fresnel zone plates in x-ray microscopy," Opt. Express, vol. 21, pp. 11747-11756, 2013.
    [2] J. Niu, M. Zhang, Y. Li, S. Long, H. Lv, Q. Liu, and M. Liu, "Highly scalable resistive switching memory in metal nanowire crossbar arrays fabricated by electron beam lithography," J. Vac. Sci. & Technol. B, vol. 34, no. 2, pp. 02G105-1–02G105-8, 2016.
    [3] R. Barbucha, M. Kocik, J. Mizeraczyk, G. Kozioł and J. Borecki, "Laser direct imaging of tracks on PCB covered with laser photoresist," Bull. Pol. Acad. Sci. Tech. Sci., vol. 56, 2008.
    [4] B. Du, H. Zhang, J. Xia, J. Wu, H. Ding, and G. Tong, "Super-resolution imaging with direct laser writing-printed microstructures," J. Phys. Chem. A, vol. 124, pp. 7211-7216, 2020.
    [5] K. Takahashi and J. Setoyama, "A UV-exposure system using DMD," Electron. Commun. Jpn. Part II: Electron., vol. 83, pp. 56-58, 2000.
    [6] H. Kueck, M. Bollerott, W. Doleschal, A. Gehner, W. Grundke, D. Kunze, R. Melcher, J. Paufler, R. Seltmann, and G. Zimmer, "New system for fast submicron laser direct writing," in Proc. SPIE, vol. 2440, pp. 506-514, 1995
    [7] R. Seltmann, W. Doleschal, A. Gehner, H. Kuck, R. Melcher, J. Paufler, and G. Zimmer, "New system for fast submicron optical direct writing," Microelectron. Eng., vol. 30, no. 1-4, pp. 123-127, 1996.
    [8] K. Zhong, Y. Gao, F. Li, N. Luo, & W. Zhang., "Fabrication of continuous relief micro-optic elements using real-time maskless lithography technique based on DMD," Opt Laser Technol, vol. 56, pp. 367-371, 2014.
    [9] J.-Y. Hur and M. Seo, "Optical Proximity Corrections for Digital Micromirror Device-based Maskless Lithography," J. Opt. Soc. Korea, vol. 16, no. 3, pp. 221-227, Sep. 2012.
    [10] K.-F. Chan, Z. Feng, R. Yang, A. Ishikawa and W. Mei, "High-resolution maskless lithography," J. Microlithogr. Microfabr. Microsyst., vol. 2, no. 4, pp. 331-339, 2003.
    [11] G. Blahusch, W. Eckstein, and C. Steger, "Calibration of Curvature of Field For Depth From Focus," ISPRS, vol. 34, no. 3/W8, pp. 173–180, 2003.
    [12] J. Park, S.-C. Byun, and B.-U. Lee, "Lens Distortion Correction Using Ideal Image Coordinates," IEEE Trans. Consum. Electron., vol. 55, no. 3, pp. 987–991, 2009.
    [13] J. Wang, F. Shi, J. Zhang, and Y. Liu, "A new calibration model of camera lens distortion," Pattern Recognit., vol. 41, Issue 2, pp. 607-615, 2008.
    [14] D.-W. Kang, M. Kang, and J.-W. Hahn, "Accurate position measurement of a high-density beam spot array in digital maskless lithography," Appl. Opt., vol. 52, no. 23, pp. 5862-5868, 2013.
    [15] Q.-K. Li, Y. Xiao, H. Liu, H.-L. Zhang, J. Xu, and J.-H. Li, "Analysis and correction of the distortion error in a DMD based scanning lithography system," Opt. Commun., vol. 434, pp. 1-6, 2019.
    [16] H.-L. Chien, Y.-H. Chiu, Y.-C. Lee, "Maskless lithography based on oblique scanning of point array with digital distortion correction," Opt. Lasers Eng., vol. 136, p. 106313, 2021.
    [17] 許永昕, "利用斜掃描與頻閃技術之高精度無光罩式微影系統的開發與應用, "博士論文, 國立成功大學機械工程學系, 2023.
    [18] 弘量簡, "光點陣列斜掃描無光罩式微影系統開發," 博士論文, 國立成功大學機械工程學系, 2020.
    [19] B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics. Chichester: Wiley Blackwell, pp. 80-88, 2019.
    [20] R. Attota, R. G. Dixson, and A. E. Vladár, "Through-focus scanning optical microscopy," Proc. SPIE, vol. 8036, p. 803610, 2011.
    [21] J. A. Nelder and R. Mead, "A simplex method for function minimization," J. Comput., vol. 7, pp. 308-313, 1965.
    [22] S. Kathavate and N. K. Srinath, "Efficiency of Parallel Algorithms on Multi Core Systems Using OpenMP," Int. J. Adv. Res. Comput. Commun. Eng., vol. 3, no. 10, 2014.
    [23] L. Zheng, U. Zywietz, T. Birr, M. Duderstadt, L. Overmeyer, B. Roth, and C. Reinhardt, “UV-LED projection photolithography for high-resolution functional photonic components,” Microsyst. Nanoeng, vol. 7, no. 1, pp. 1–11, 2021.

    無法下載圖示 校內:2028-08-11公開
    校外:2028-08-11公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE