簡易檢索 / 詳目顯示

研究生: 劉子毓
Liu, Tz-Yu
論文名稱: 小鼠palladin於肌生成時之啟動子與基因表現分析
Expression Pattern and Promoter Analysis of Murine Palladin in Myogenesis
指導教授: 王浩文
Wang, Hao-Ven
學位類別: 碩士
Master
系所名稱: 生物科學與科技學院 - 生命科學系
Department of Life Sciences
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 147
中文關鍵詞: 肌動蛋白微絲啟動子小鼠肌原細胞
外文關鍵詞: Actin filament, Palladin, promoter, C2C12
相關次數: 點閱:113下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 肌動蛋白微絲(actin filament)廣泛存在於各種細胞類型中,參與調控細胞遷移、囊泡運輸、維持細胞形狀、細胞附著與肌肉收縮等運動。目前已知許多微絲結合性蛋白(ABP; Actin-binding protein)會共同調控微絲的組裝與動態,進而影響細胞的機械特性。Palladin是一種微絲關聯蛋白(actin associated protein),基因名稱為Palld,屬於Palladin/Myotilin/Myopalladin家族,並且目前已知的蛋白質產物主要有三種異構型:200 kDa isoform、140 kDa isoform、90-92 kDa isoform,先前研究指出,此三種異構物在不同組織具有不同的表現分布,而本篇主要探討palladin三種異構物在骨骼肌肉生成與分化時的轉錄調控,與個別的表現量和分布。首先我們利用螢火蟲冷光酶系統(luciferase assay)來檢測出可能啟動子區域,並利用PROMO軟體搜尋可能參與調控的轉錄因子。再藉著即時聚合酶連鎖反應(real-time PCR)與西方點墨法(Western blotting),探討Palld gene在RNA與蛋白質階層的表現量,並透過免疫螢光染色技術探討palladin三種異構物在小鼠肌原細胞株(C2C12)中的表現分布位置與其他蛋白質之間的交互關係。透過本篇實驗結果,在palladin於骨骼肌肉細胞發育與分化上所扮演的角色提供了一些重要資訊,但未來還需透過更進一步的研究探討,找出更詳細的調控機制,並釐清palladin三種異構物於肌肉生成過程所扮演的角色。

    Palladin, one of palladin/myotilin/myopalladin family, characterize and identified in 2000, is a scaffold protein involved in the formation of actin-associated protein complex which plays an important role in the cell movement and adhesion. Members in this family share similar structure and all related in actin cytoskeleton regulation. At least three isoforms of palladin, 200 kDa, 140 kDa and 90 kDa, has been identified, each of them had been found some different expression level in different tissue. However, it remains unclear the role of palladin in skeletal muscle differentiation. The main aim of this study is to identify the promoter region and the expression pattern of these three isoforms and the relation to the differentiation of murine skeletal muscle C2C12 myoblast. First, we cloned the possible promoter regions to measure the promoter activity by utilizing of luciferase assay system, then used online program to search putative transcription factor binding sites. Next, we investigated endogenous mRNA and protein expression level of these three palladin isoforms by real-time PCR and Western blotting. Furthermore, we used the Immunofluoresence staining to study the expression pattern and the relationship of palladin isoforms and other proteins, like integrin β1, vinculin, actin and α-actinin. We hope the research results in this study will provide more information in physiological, skeletal muscle development and disease studies in the future.

    目錄 摘要……………………………………………………………………………I Extend Abstract……………………………………………………………….II 致謝………………………………………………………………………….VI 目錄………………………………………………………………………...VII 表目錄……………………………………………………………………….XI 圖目錄…………………………………………………………………….XII 1. 前言………………………………………………………………………..1 1.1 細胞骨架……………………………………………………………1 1.2 細胞骨架的組成…………………………………………………..…2 1.3 微絲肌動蛋白的異構物與其分布………………………………..…3 1.4 微絲的結合性蛋白 (Actin-binding protein; ABP)………………….4 1.5 微絲關聯性蛋白─Palladin…………………………………………5 1.6 Palld基因構造與異構物………...……………………………...….6 1.7 Palladin的表現分布位置(palladin expression pattern)……………..7 1.8 Palladin關聯性蛋白(Palladin associated protein)…………………..8 1.9 Palladin的功能………………………………………………………9 1.10 Palladin與疾病相關的研究………………………………………11 1.11 研究動機與目的………………………………………………….12 2. 實驗材料與方法…………………………………………………………14 2.1 實驗材料……………………………………………………………14 2.1.1 細胞株……………………………………………………….14 2.1.2 菌株………………………………………………………….14 2.1.3 載體………………………………………………………….14 2.1.4 分子生物相關套組………………………………………….14 2.1.5 儀器………………………………………………………….15 2.1.6 顯微照相系統……………………………………………….15 2.1.7 藥品………………………………………………………….16 2.1.8 抗體………………………………………………………….19 2.2 實驗方法……………………………………………………………19 2.2.1 細胞解凍與培養…………………………………………….19 2.2.2 細胞計數與繼代培養……………………………………….19 2.2.3 預測palld基因啟動子區域………………………………..20 2.2.4 基因體DNA萃取………………………………………..…21 2.2.5 DNA選殖質體製備…………………………………………21 2.2.6 小鼠肌原母細胞DNA轉染……………………………..…22 2.2.7螢火蟲冷光活性檢測 Luciferase assay…………………….23 2.2.8 RNA萃取與即時聚合酶連鎖反應(Real-time PCR)………23 2.2.9 蛋白質萃取…………………………………………………24 2.2.10 蛋白質定量………………………………………………..25 2.2.11 西方點墨法………………………………………………..25 2.2.12 免疫螢光染色……………………………………………..28 3. 結果………………………………………………………………………30 3.1 Palld gene不同啟動子片段的活性測試.……………………………..30 3.2 Palld gene不同啟動子片段的轉錄結合位之預測.….……………..31 3.3 Palladin三個isoform其mRNA表現量……………………………33 3.4 Palladin三個isoform其蛋白質表現量……………………………34 3.5 Palladin三個異構物在C2C12細胞株中的表現位置…………….34 3.6 Palladin與肌動蛋白在C2C12細胞株中的表現位置…………….39 3.7 Palladin與α-actinin在C2C12細胞株中的表現位置…………….40 4. 討論………………………………………………………………………41 4.1 Palld基因啟動子活性分析………………………………………..41 4.2 Palld啟動子之轉錄因子結合位之預測…………………………..43 4.3 Palladin在C2C12細胞株分化時的RNA與蛋白質表現量………45 4.4 Palladin三種isoform在C2C12中的表現位置……………………46 4.5 Palladin與actin在C2C12細胞株中的共區域化現象…………...50 4.6 Palladin與α-actinin在C2C12細胞株中的表現分布……………51 4.7 Palladin 90 kDa isoform的表現調控與在細胞中的分布……….…52 4.8 Palladin 140 kDa isoform的表現調控與在細胞中的分布………..54 4.9 Palladin 200 kDa isoform的表現調控與在細胞中的分布…….…..56 4.10 結語……………………………………….……………………….57 5. 參考文獻…………………...…………………………………………….59 表…………………………………………………………………………….66 圖……………………………………………………………………..……..84 附錄……………………………………………………………………….146 表目錄 表一、palld gene 90 kDa isoform啟動子區域MyoD結合位之預測……64 表二、palld gene 90 kDa isoform啟動子區域E47結合位之預測之一….65 表三、palld gene 90 kDa isoform啟動子區域E47結合位之預測之二….66 表四、palld gene 90 kDa isoform啟動子區域Nkx 2-5結合位之預測…67 表五、palld gene 90 kDa isoform啟動子區域TATA-box結合位之預…68 表六、palld gene 90 kDa isoform啟動子區域Myogenin結合位之預測.69 表七、palld gene 140 kDa isoform啟動子區域MyoD結合位之預測…70 表八、palld gene 140 kDa isoform啟動子區域E47結合位之預測之…71 表九、palld gene 140 kDa isoform啟動子區域E47結合位之預測之二.72 表十、palld gene 140 kDa isoform啟動子區域Nkx 2-5結合位之預測.73 表十一、palld gene 140 kDa isoform啟動子區域TATA-box結合位之預.74 表十二、palld gene 140 kDa isoform啟動子區域Myogenin結合位之一.75 表十三、palld gene 140 kDa isoform啟動子區域Myogenin結合位之二.76 表十四、palld gene 200 kDa isoform啟動子區域MyoD結合位之預測.77 表十五、palld gene 200 kDa isoform啟動子區域E47結合位之預測…78 表十六、palld gene 200 kDa isoform啟動子區域Nkx 2-5結合位之預測.79 表十七、palld gene 200 kDa isoform啟動子區域Myogenin結合位預測.80 表十八、palld gene 200 kDa isoform啟動子區域Myogenin結合位預測.81 圖目錄 圖一、Palladin/Myotilin/Myopalladin家族的基因結構………………….82 圖二、Palladin經由選擇性剪切產生不同的異構物……………………83 圖三、小鼠palladin的三種主要異構物的domain與其結合蛋白(binding partner)之結合位……………………………………………………84 圖四、palld基因90 kDa isoform啟動子活性測試…………….……….85 圖五、palld基因140 kDa isoform啟動子活性測試……………………86 圖六、palld基因200 kDa isoform啟動子活性測試……………………87 圖七、palld gene 90 kDa isoform啟動子區域轉錄因子結合位之預……88 圖八、palld gene 140 kDa isoform啟動子區域轉錄因子結合位之預測..89 圖九、palld gene 200 kDa isoform啟動子區域轉錄因子結合位之預測...90 圖十、Palladin mRNA的表現量………………………………………..91 圖十一、Palladin 90 kDa isoform的蛋白質表現量………..………….92 圖十二、Palladin 90 kDa、140 kDa、200 kDa isoform其蛋白質表現 量………………………………………………………………….93 圖十三、Palladin 90 kDa、140 kDa、200 kDa isoform螢光染色圖……….94 圖十四、Palladin 90 kDa、140 kDa、200 kDa isoform螢光染色圖……….95 圖十五、Palladin 90 kDa isoform共軛焦顯微螢光染色圖………………..96 圖十六、Palladin 90 kDa isoform共軛焦顯微螢光染色圖(分化第零天)…97 圖十七、Palladin 90 kDa isoform共軛焦顯微螢光染色3D結構圖(分化第 零天)………………………………………………………………98 圖十八、Palladin 90 kDa isoform共軛焦顯微螢光染色圖(分化第二天)…99 圖十九、Palladin 90 kDa isoform共軛焦顯微螢光染色3D結構圖(分化第 二天)……………………………………………………………100 圖二十、Palladin 90 kDa isoform共軛焦顯微螢光染色圖(分化第四天)..101 圖二十一、Palladin 90 kDa isoform共軛焦顯微螢光染色3D結構圖(分化 第四天)………………………………………………………..102 圖二十二、Palladin 140 kDa isoform共軛焦顯微螢光染色圖……………103 圖二十三、Palladin 140 kDa isoform共軛焦顯微螢光染色圖(分化第零 天)……………………………………………………………..104 圖二十四、Palladin 140 kDa isoform共軛焦顯微螢光染色3D結構圖(分化 第零天)……………………………………………………….105 圖二十五、Palladin 140 kDa isoform共軛焦顯微螢光染色圖(分化第二 天)……………………………………………………………..106 圖二十六、Palladin 140 kDa isoform共軛焦顯微螢光染色3D結構圖(分化 第二天)………………………………………………………..107 圖二十七、Palladin 140 kDa isoform共軛焦顯微螢光染色圖(分化第四 天)……………………………………………………………..108 圖二十八、Palladin 140 kDa isoform共軛焦顯微螢光染色3D結構圖(分化 第四天)………………………………………………………..109 圖二十九、Palladin 200 kDa isoform共軛焦顯微螢光染色圖…………..110 圖三十、Palladin 200 kDa isoform共軛焦顯微螢光染色圖(分化第零天).111 圖三十一、Palladin 200 kDa isoform共軛焦顯微螢光染色3D結構圖(分化 第零天)………………………………………………………..112 圖三十二、Palladin 200 kDa isoform共軛焦顯微螢光染色圖(分化第二 天)……………………………………………………………..113 圖三十三、Palladin 200 kDa isoform共軛焦顯微螢光染色3D結構圖(分化 第二天)……………………………………………………….114 圖三十四、Palladin 200 kDa isoform共軛焦顯微螢光染色圖(分化第四 天)……………………………………………………………..115 圖三十五、Palladin 200 kDa isoform共軛焦顯微螢光染色3D結構圖(分化 第四天)………………………………………………………..116 圖三十六、Palladin 90 kDa isoform共軛焦顯微螢光染色圖…………….117 圖三十七、Palladin 90 kDa isoform共軛焦顯微螢光染色圖(分化第零天)118 圖三十八、Palladin 90 kDa isoform共軛焦顯微螢光染色3D結構圖(分化 第零天)………………………………………………………..119 圖三十九、Palladin 90 kDa isoform共軛焦顯微螢光染色圖(分化第二 天)…………………………………………………………..120 圖四十、Palladin 90 kDa isoform共軛焦顯微螢光染色3D結構圖(分化第 二天)………………………………………………………….121 圖四十一、Palladin 90 kDa isoform共軛焦顯微螢光染色圖(分化第四 天)…………………………………………………………….122 圖四十二、Palladin 90 kDa isoform共軛焦顯微螢光染色3D結構圖(分化 第四天)……………………………………………………….123 圖四十三、Palladin 140 kDa isoform共軛焦顯微螢光染色圖…………..124 圖四十四、Palladin 140 kDa isoform共軛焦顯微螢光染色圖(分化第零 天)……………………………………………………………..125 圖四十五、Palladin 140 kDa isoform共軛焦顯微螢光染色3D結構圖(分化 第零天)………………………………………………………126 圖四十六、Palladin 140 kDa isoform共軛焦顯微螢光染色圖(分化第零 天)…………………………………………………………….127 圖四十七、Palladin 140 kDa isoform共軛焦顯微螢光染色3D結構圖(分化 第零天)………………………………………………………..128 圖四十八、Palladin 140 kDa isoform共軛焦顯微螢光染色圖(分化第二 天)……………………………………………………………..129 圖四十九、Palladin 140 kDa isoform共軛焦顯微螢光染色3D結構圖(分化 第二天)………………………………………………………130 圖五十、Palladin 140 kDa isoform共軛焦顯微螢光染色圖(分化第四天).131 圖五十一、Palladin 140 kDa isoform共軛焦顯微螢光染色3D結構圖(分化 第四天)………………………………………………………..132 圖五十二、Palladin 200 kDa isoform共軛焦顯微螢光染色圖……………133 圖五十三、Palladin 200 kDa isoform共軛焦顯微螢光染色圖(分化第零 天)……………………………………………………………134 圖五十四、Palladin 200 kDa isoform共軛焦顯微螢光染色3D結構圖(分化 第零天)………………………………………………………135 圖五十五、Palladin 200 kDa isoform共軛焦顯微螢光染色圖(分化第二 天)…………………………………………………………….136 圖五十六、Palladin 200 kDa isoform共軛焦顯微螢光染色3D結構圖(分化 第二天)……………………………………………………….137 圖五十七、Palladin 200 kDa isoform共軛焦顯微螢光染色圖(分化第四 天)……………………………………………………………..138 圖五十八、Palladin 200 kDa isoform共軛焦顯微螢光染色3D結構圖(分化 第四天)………………………………………………………..139 圖五十九、Palladin 90 kDa、140 kDa、200 kDa isoform螢光染色圖(分化 第零天)………………………………………………………..140 圖六十、Palladin 90 kDa、140 kDa、200 kDa isoform螢光染色圖(分化第 四天)…………………………………………………………..141 圖六十一、Palladin 90 kDa、140 kDa、200 kDa isoform螢光染色圖(分化 第零天)……………………………………………………….142 圖六十二、Palladin 90 kDa、140 kDa、200 kDa isoform螢光染色圖(分化 第四天)………………………………………………………..143

    Asano, E., M. Maeda, H. Hasegawa, S. Ito, T. Hyodo. 2011 Role of palladin phosphorylation by extracellular signal-regulated kinase in cell migration. PLoS ONE 6(12): e29338.

    Benson, D.W., G.M. Silberbach, A. Kavanaugh-McHugh, C. Cottrill, Y. Zhang, S. Riggs, O. Smalls, M.C. Johnson, M.S. Watson, J.G. Seidman, C.E. Seidman, J. Plowden, and J.D. Kugler. 1999. Mutations in the cardiac transcription factor NKX2.5 affect diverse cardiac developmental pathways. The Journal of clinical investigation. 104:1567-1573.

    Bang, M.L., R.E. Mudry, A.S. McElhinny, K. Trombitas, A.J. Geach, R. Yamasaki, H. Sorimachi, H. Granzier, C.C. Gregorio, and S. Labeit. 2001. Myopalladin, a Novel 145-Kilodalton Sarcomeric Protein with Multiple Roles in Z-Disc and I-Band Protein Assemblies. The Journal of cell biology. 153:413-428.

    Becker, J.R., C.M. Dorman, T.M. McClafferty, and S.E. Johnson. 2001. Characterization of a dominant inhibitory E47 protein that suppresses C2C12 myogenesis. Experimental cell research. 267:135-143.

    Boukhelifa, M., M. M. Parast., J. G. Valtschanoff., A. S. LaMantia., R. B. Meeker., and C.A. Otey. 2001 A role for the cytoskeleton-associated protein palladin in neurite outgrowth. Molecular Biology of the Cell. 12: 2721-2729

    Boukhelifa, M., S.J. Hwang, J.G. Valtschanoff, R.B. Meeker, A. Rustioni, and C.A. Otey. 2003. A critical role for palladin in astrocyte morphology and response to injury. Molecular and cellular neurosciences. 23:661-668.

    Boukhelifa, M., M.M. Parast, J.E. Bear, F.B. Gertler, and C.A. Otey. 2004. Palladin is a novel binding partner for Ena/VASP family members. Cell motility and the cytoseleton. 58:17-29.

    Berkes, C.A., and S.J. Tapscott. 2005. MyoD and the transcriptional control of myogenesis. Seminars in cell & developmental biology. 16:585-595.

    Boukhelifa, M., M. Moza, T. Johansson, A. Rachlin, M. Parast, S. Huttelmaier, P. Roy, B.M. Jockusch, O. Carpen, R. Karlsson, and C.A. Otey. 2006. The proline-rich protein palladin is a binding partner for profilin. The FEBS journal. 273:26-33.

    Carlier, M.F., D. Pantaloni, and E.D. Korn. 1987. The mechanisms of ATP hydrolysis accompanying the polymerization of Mg-actin and Ca-actin. The Journal of biological chemistry. 262:3052-3059.

    Crawford, K., R. Flick, L. Close, D. Shelly, R. Paul, K. Bove, A. Kumar, and J. Lessard. 2002. Mice lacking skeletal muscle actin show reduced muscle strength and growth deficits and die during the neonatal period. Molecular and cellular biology. 22:5887-5896.

    Cao, Y., Z. Yao, D. Sarkar, M. Lawrence, G.J. Sanchez, M.H. Parker, K.L. MacQuarrie, J. Davison, M.T. Morgan, W.L. Ruzzo, R.C. Gentleman, and S.J. Tapscott. 2010. Genome-wide MyoD binding in skeletal muscle cells: a potential for broad cellular reprogramming. Developmental cell. 18:662-674.

    Chin, Y. R. and A. Toker. 2010. Akt2 regulates expression of the actin-bundling protein palladin. FEBS Letters. 584: 4769-4774

    Chin, Y. R., and A. Toker. 2010. The actin bundling protein palladin is an Akt-specific substrate that regulates breast cancer cell migration. Mol Cell. 38(3) : 333-344

    Ciobanasu, C., B. Faivre, C. L. Clainche. 2013. Integrating actin dynamics, mechanotransduction and integrin activation: The multiple functions of actin binding proteins in focal adhesions. European Journal of Cell Biology. Review. 92(10-11): 339-348

    dos Remedios, C.G., D. Chhabra, M. Kekic, I.V. Dedova, M. Tsubakihara, D.A. Berry, and N.J. Nosworthy. 2003. Actin binding proteins: regulation of cytoskeletal microfilaments. Physiological reviews. 83:433-473.

    Dixon, R. D. S., D. K. Arneman, A. S. Rachlin, S. L. Campbell. and C. A. Otey. 2008 Palladin is an actin cross-linking protein that uses immunoglobulin-like domains to bind filamentous actin. The journal of biological chemistry. 283(10): 6222-6231

    Egelman, E.H., and A. Orlova. 2001. Two conformations of G-actin related to two conformations of F-actin. Results and problems in cell differentiation. 32:95-101.

    Fickett, J.W. 1995. Coordinate positioning of MEF2 and myogenin binding sites.

    Goicoechea, S.M., D. Arneman, and C.A. Otey. 2008. The role of palladin in actin organization and cell motility. European journal of cell biology. 87:517-525.

    Goicoechea, S.M., B. Bednarski, R. Garcia-Mata, H. Prentice-Dunn, H.J. Kim, and C.A. Otey. 2009. Palladin contributes to invasive motility in human breast cancer cells. Oncogene. 28:587-598.

    Grooman, B., Fujiwara I, Otey C, Upadhyaya A. 2012. Morphology and viscoelasticity of actin networks formed with the mutually interacting
    crosslinkers: palladin and alpha-actinin. PLoS ONE 7(8): e42773.

    Hwang S. J., S. V. Pagliardini, M. Boukhelifa, M. M. Parast, C. A. Otey., A. Rustioni, and J. G. Valtschanoff. 2001. Palladin is expressed preferentially in excitatory terminals in the rat central nervous system. The journal of comparative neurology. 436:211-224

    Hoke, M., M. Schilinger, P. Dick, M. Exner, R. Koppensteiner, E. Minar, W. Mlekusch, O. Schlager, O. Wagner., and C. Mannhalter. 2011. Polymorphism of the palladin gene nd cardiovascular outcome in patients with atherosclerosis. European Journal of Clinical Inverstigation. 41(4): 365-371

    Jin, L., Q. Gan, B. J. Zieba, S. M. Goicoechea, and G. K. Owens. 2010. The actin associated protein palladin is important for the early smooth muscle cell differentiation. PLoS ONE 5(9): e12823.

    Jin, L. 2011. The actin associated protein palladin in smooth muscle and in the development of diseases of the cardiovasculature and in cancer. J. Muscle Res. Cell Motil. Review.

    Kumar, A., K. Crawford, L. Close, M. Madison, J. Lorenz, T. Doetschman, S. Pawlowski, J. Duffy, J. Neumann, J. Robbins, G.P. Boivin, B.A. O'Toole, and J.L. Lessard. 1997. Rescue of cardiac alpha-actin-deficient mice by enteric smooth muscle gamma-actin. Proceedings of the National Academy of Sciences of the United States of America. 94:4406-4411.

    Kel, A.E. 2003. MATCHTM: a tool for searching transcription factor binding sites in DNA sequences. Nucleic acids research. 31:3576-3579.

    Luo, H., X. Liu, F. Wang, Q. Huang, S. Shen, L. Wang, G. Xu, X. Sun, H. Kong, M. Gu, S. Chen, Z. Chen, and Z. Wang. 2005. Disruption of palladin results in neural tube closure defects in mice. Molecular and cellular neurosciences. 29:507-515.

    Liu, X. S., H. J. Luo, H. Yang, L. Wang, H. Kong, Y. E. Jin, F. Wang, M. M. Gu, Z. Chen, Z. Y. Lu, and Z.G. Wang. 2007. Journal of Cellular Biochemistry 100: 1288-1300

    Mykkänen, O.M., M. Grönholm, M. Rönty, M. Lalowski, P. Salmikangas, H. Suila, and O. Carpén. 2001 Characterization of human palladin, a microfilamentassociated protein. Molecular Biology of the Cell. 12: 3060-3073

    Messeguer, X., R. Escudero, D. Farre, O. Nunez, J. Martinez, and M.M. Alba. 2002. PROMO: detection of known transcription regulatory elements using species-tailored searches. Bioinformatics. 18:333-334.

    Matys, V. 2003. TRANSFAC(R): transcriptional regulation, from patterns to profiles. Nucleic acids research. 31:374-378.

    Maeda, M., E. Asano., D. Ito, S. Ito, Y. Hasegawa, M. Hamaguchi, and T. Senga. 2009. Characterization of interaction between CLP36 and palladin. FEBS Journal 276: 2775–2785

    Nowak, S. J., P. C. Nahirney, A. K. Hadjantonakis, and M. K. Baylies. 2009. Nap1-mediated actin remodeling is essential for mammalian myoblast fusion. Journal of Cell Science. 122: 3282-3293

    Niedenberger, B.A., V.K. Chappell, E.P. Kaye, R.H. Renegar, and C.B. Geyer. 2013. Nuclear localization of the actin regulatory protein palladin in sertoli cells. Molecular reproduction and development. 80:403-413.

    Nguyen, N. U. N. N., V. R. Liang, and H. V. Wang. 2014. Actin-associated protein palladin is required for migration behavior and differentiation potential of C2C12 myoblast cells. Biochemical and Biophysical Research Communications. 452: 728–733

    Olson, E. 1992. Activation of muscle-specific transcription by myogenic helix-loop-helix proteins. Symposia of the Society for Experimental Biology. 46:331-341.

    Otey, C.A., A. Rachlin, M. Moza, D. Arneman, and O. Carpen. 2005. The palladin/myotilin/myopalladin family of actin-associated scaffolds. International review of cytology. 246:31-58.

    Parast, M.M., and C.A. Otey. 2000. Characterization of palladin, a novel protein localized to stress fibers and cell adhesions. The Journal of cell biology. 150:643-656.

    Perrin, B.J., and J.M. Ervasti. 2010. The actin gene family: function follows isoform. Cytoskeleton. 67:630-634.

    Qian, X., D.D. Mruk, Y.H. Cheng, and C.Y. Cheng. 2013a. Actin cross-linking protein palladin and spermatogenesis. Spermatogenesis. 3:e23473.

    Ronty, M., A. Taivainen, M. Moza, C.A. Otey, and O. Carpen. 2004. Molecular analysis of the interaction between palladin and alpha-actinin. FEBS letters. 566:30-34.

    Ronty, M., A. Taivainen, M. Moza, G.D. Kruh, E. Ehler, and O. Carpen. 2005. Involvement of palladin and alpha-actinin in targeting of the Abl/Arg kinase adaptor ArgBP2 to the actin cytoskeleton. Experimental cell research. 310:88-98.

    Rachlin, A.S., and C.A. Otey. 2006. Identification of palladin isoforms and characterization of an isoform-specific interaction between Lasp-1 and palladin. Journal of cell science. 119:995-1004.

    Ronty, M., A. Taivainen, L. Heiska, C. A. Otey, E. Ehler, W. K. Song, and O. Carpen. 2007 Palladin interacts with SH3 domains of SPIN90 and Src and is required for Src-induced cytoskeletal remodeling Exp Cell Res. 313(12): 2575–2585

    Schildmeyer, L.A., R. Braun, G. Taffet, M. Debiasi, A.E. Burns, A. Bradley, and R.J. Schwartz. 2000. Impaired vascular contractility and blood pressure homeostasis in the smooth muscle alpha-actin null mouse. FASEB journal : official publication of the Federation of American Societies for Experimental Biology. 14:2213-2220.

    Tay, P. N., P. Tan, U. Lan, C. H. W. Leung, M. Laban, T. C. Tan, H. Ni, J. Manikandan, S. B. Abdulrashid, B. Yan, C. T. Yap, L. H. K. Lim, Y. C. Lim, S. C. Hoo. 2010. Palladin, an actin-associated protein, is required for adherens junction formation and intercellular adhesion in HCT116 colorectal cancer cells. International Journal of Oncology. 37: 909-926

    Wall, M. E., A. Rachlin., C. A. Otey, and E. G. Loboa. 2007 Human adipose-derived adult stem cells upregulate palladin during osteogenesis and in response to cyclic tensile strain. Am J Physiol Cell Physiol 293: C1532–C1538

    Wang, H.V., and M. Moser. 2008. Comparative expression analysis of the murine palladin isoforms. Developmental dynamics : an official publication of the American Association of Anatomists. 237:3342-3351.

    Zhang, T., K. J. M. Zaal, J. Sheridan, A. Mehta., G.G.Gundersen, and E. Ralston. 2009. Microtubule plus-end binding protein EB1 is necessary for muscle cell differentiation, elongation and fusion. J Cell Sci. 122(9): 1401-1409

    Zhou, W., S. Cui, S. Han, B. Cheng, Y. Zheng, and Y. Zhang. 2011. Palladin is a novel binding partner of ILKAP in eukaryotic cells. Biochemical and Biophysical Research Communications 411:768–773.

    無法下載圖示 校內:2020-02-12公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE