簡易檢索 / 詳目顯示

研究生: 方辰云
Fang, Chen-Yun
論文名稱: 鉛心橡膠支承搭配液流阻尼器基礎隔震建築數位分身之識別研究
Identification of Digital Twin of a Base-isolated LRB-FD Building
指導教授: 朱世禹
Chu, Shih-Yu
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 233
中文關鍵詞: 基礎隔震建築鉛心橡膠支承墊OKID/ERA等值慣性力遲滯迴圈隔震元件參數液流黏性阻尼器數位分身
外文關鍵詞: Lead Rubber Bearing, Hysteresis Loop, Fluid Damper, OKID/ERA, Digital Twin
相關次數: 點閱:108下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在全球數位化浪潮席捲之下,數位分身技術已逐漸擴展到各個產業應用,數位分身為實體產品之虛擬分身,藉由感測器所量測之實體資料,提供給軟體世界中的虛擬分身,可即時監控實體產品狀態,以便精準快速反應各種變動情況,而本文將數位分身之概念延伸至隔震建築中,透過地震儀量測資料識別花蓮慈濟醫院急診大樓之簡化等值參數,而此簡化等值參數又可分為隔震元件參數以及上部結構系統參數,隔震元件參數透過等值慣性力遲滯迴圈並根據理論雙線性模型之特性迴歸預估而得,並於雙線性模型中加入液流黏性阻尼器,模擬對隔震元件阻尼效應之影響,上部結構系統參數則是透過 OKID/ERA 系統識別技術識別而得,為配合結構分析常用之分析軟體設定,於文中提出建議之 ETABS 模型等值樓層勁度,綜合以上兩類等值模型參數,利用 ETABS 建立花蓮慈濟醫院急診大樓之簡化數位分身模型模擬真實結構物之行為,並將模型預估反應與真實量測資料相互比較,探討其適用性與正確性。

    Under the wave of global digitization, digital twin (DT) technology has been gradually extended to various industries. DT is a virtual model of a physical entity. The data measured by the sensors are provided to the virtual model in the software world. The states of the physical entity can be monitored in real-time so that the various changes can be accurately and quickly grasped. In this paper, the concept of DT is extended to the baseisolated building and the simplified equivalent parameters of the emergency building of Hualien Tzu Chi hospital are identified through the measurement data. The simplified equivalent parameters can be divided into the parameters of the isolation and the parameters of the superstructure. The parameters of the isolation are estimated through the equivalent inertial force hysteresis loop with the characteristics of the theoretical bilinear model. In addition, the damping effect of the isolation is simulated by adding the fluid damper (FD) to the bilinear model. The parameters of the superstructure are identified by OKID/ERA system identification technology. To meet the customary setting of ETABS software, the suggested equivalent floor stiffness of the ETABS model is proposed in the paper. Based on the two types of equivalent model parameters mentioned above, a simplified DT model of the emergency building of Hualien Tzu Chi Hospital was established by ETABS. Then it can simulate the behavior of the real structure and compare the predicted response of the model with the real measurement data to discuss its applicability and correctness.

    摘要 I EXTEND ABSTRACT II 誌謝 VIII 目錄 IX 表目錄 XII 圖目錄 XV 第1章 緒論 1 1.1 研究動機與目的 1 1.2 文獻回顧 3 1.3 本文內容 6 第2章 理論介紹 9 2.1 狀態空間模型 9 2.1.1 連續與離散時間系統模態頻率與阻尼比推導 9 2.1.2 連續時間狀態空間方程與s轉換形式 11 2.1.3 離散時間狀態空間方程與z轉換形式 11 2.2 觀測器/卡曼濾波器識別方法(OKID) 13 2.2.1 基本觀測器方程式 13 2.2.2 計算馬可夫參數 18 2.2.3 計算觀測器增益矩陣 20 2.3 特徵系統實現理論(ERA) 21 2.3.1 特徵系統實現理論(ERA) 21 2.3.2 區別真實振態與雜訊振態之候選方法 26 2.4 由識別結果反求結構系統參數 29 2.4.1 模態分析之理論推導 29 2.4.2 反求結構系統參數 32 2.5 鉛心橡膠支承墊雙線性模型介紹 33 2.5.1 鉛心橡膠支承彈塑性力與位移行為 33 2.5.2 雙線性模型 34 2.6 推求隔震層總橫力之等值慣性力 37 2.7 ktan雙線性數值模型介紹 38 2.7.1 推導ktan 38 2.7.2 以狀態空間表示ktan雙線性模型 40 2.8 線性黏性阻尼器之等效阻尼比計算 41 第3章 理論模型驗證 45 3.1 確認ktan模型正確性 45 3.1.1 Nonlin設定 45 3.1.2 ETABS設定 46 3.2 隔震元件參數識別 48 3.2.1 預估降伏勁度 48 3.2.2 預估彈性勁度 48 3.2.3 其他參數預估與修正 52 3.3 上部結構參數識別 54 3.3.1 ETABS模型 54 3.3.2 OKID/ERA識別結果 54 3.3.3 等值模型反應驗證 55 3.4 隔震建築模型反應驗證 57 第4章 實際隔震建築數位分身模型 87 4.1 花蓮慈濟醫院急診大樓基本介紹 87 4.2 量測資料異常檢測 87 4.3 隔震墊等值參數預估 90 4.3.1 預估降伏勁度 90 4.3.2 預估彈性勁度 91 4.3.3 其他參數預估與修正 92 4.4 識別上部結構參數 93 4.5 建立數位分身模型及其反應驗證 94 4.5.1 ETABS建模 94 4.5.2 X方向模擬結果 95 4.5.3 Y方向模擬結果 96 4.5.4 小結 97 第5章 結論與建議 223 5.1 結論 223 5.2 建議 225 參考文獻 226 口委意見表 232

    [1] Chang, K.C., & Hwang, J.S.,“ Applications of Seismic Isolation and Energy Dissipation Systems to Buildings in Taiwan”, Proceedings of the JSSI 15th Anniversary International Symposium on Seismic Response Controlled Buildings for Sustainable Society. Tokyo, Japan, 2009.
    [2] Chu, S.Y., & Kang, C.J.,“ Development of the structural health record of containment building in nuclear power plant”, Nuclear Engineering and Technology, 53(6), 2038-2045, 2021.
    [3] Chu, S.Y., Kang, C.J., Hu, M.X., & Chang, L.C.,“ Rapid damage assessment of 1/3 scaled-down two-story reinforced concrete school building models”, Journal of Structural Integrity and Maintenance, 7(2), 110-119, 2022.
    [4] Chu, S.Y., & Wu, R.L.,“ A normalized-relative-displacement-vibration-shape (NRDVS)-based structural damage assessment scheme”, Journal of Structural Integrity and Maintenance, 3(3), 150-159, 2018.
    [5] Chu, S.Y., & Lo, S.C.,“ Application of real‐time adaptive identification technique on damage detection and structural health monitoring”, Structural Control and Health Monitoring, 16(2), 154-177, 2009.
    [6] Chu, S.Y., & Lo, S.C.,“ Application of the on‐line recursive least‐squares method to perform structural damage assessment”, Structural Control and Health Monitoring, 18(3), 241-264, 2011.
    [7] Dang, H. V., Tatipamula, M., & Nguyen, H. X., “Cloud-based digital twinning for structural health monitoring using deep learning”, IEEE Transactions on Industrial Informatics, 18(6), 3820-3830, 2021.
    [8] Gargaro, D., Rainieri, C., & Fabbrocino, G. ,“Structural and seismic monitoring of the “Cardarelli” Hospital in Campobasso”,Procedia engineering, 199, 936-941, 2017.
    [9] Guo, J., Gu, Y., Wu, W., Chu, S., & Dang, X., “Seismic Fragility Assessment of Cable-Stayed Bridges Crossing Fault Rupture Zones”, Buildings, Vol. 12, 1045, 2022.
    [10] Guo, J., Li, H., Zhang, C., Chu, S., & Dang, X., “Effect of an Innovative Friction Damper on Seismic Responses of a Continuous Girder Bridge under Near-Fault Excitations”, Buildings, Vol. 12, 1019, 2022.
    [11] Juang, J.N, “Applied system identification”, Prentice-Hall, Inc, 1994.
    [12] Kelly, J.M., “Aseismic base isolation: review and bibliography”, Soil Dynamics and earthquake engineering, 5(4), 202-216, 1986.
    [13] Lin, C.C., Wang, J.F., & Lin, G.L., “Building Health Monitoring and Diagnosis from Earthquake Response Records”, 8th International Conference on Urban Earthquake Engineering (8CUEE), Registration ID: 11-240, March 7-8, Tokyo Institute of Technology, Tokyo, Japan, 2011.
    [14] Liu, K.S., Shin, T.C., & Tsai, Y.B.,“ A free-field strong motion network in Taiwan: TSMIP”, Terrestrial, Atmospheric and Oceanic Sciences, 10(2), 377-396, 1999.
    [15] Martelli, A., Clemente, P., De Stefano, A., Forni, M., & Salvatori, A., “Recent Development and Application of Seismic Isolation and Energy Dissipation and Conditions for Their Correct Use”, Perspectives on European Earthquake Engineering and Seismology Volume 1, Springer International Publishing, Cham, (pp. 449-488), 2014.
    [16] Naeim, F., & Kelly, J. M., “Design of seismic isolated structures: from theory to practice”, John Wiley & Sons, New York, 1999.
    [17] Pan, T., & Yang, G., “Nonlinear analysis of base-isolated MDOF structures”, Proceedings of the 11th World Conference on Earthquake Engineering, Paper, 1996.
    [18] Pitilakis, K., Karapetrou, S., Bindi, D., Manakou, M., Petrovic, B., Roumelioti, Z., Boxberger, T., Parolai, S., “Structural monitoring and earthquake early warning systems for the AHEPA hospital in Thessaloniki”, Bulletin of Earthquake Engineering, 14(9), 2543-2563, 2016.
    [19] Skinner, R., Robinson, W., & McVerry, G., “Seismic isolation in New Zealand”, Nuclear Engineering and Design, 127(3), 281-289, 1991.
    [20] Wang, J.F., Huang, M.C., Lin, C.C., & Lin, T.K., “Damage identification of isolators in base-isolated torsionally coupled buildings”, Smart Structures and Systems, 11(4), 387-410, 2013.
    [21] Wang, S., Lin, W., Yang, C., Chang, K., Huang, Y., & Hwang, J., “Recent progress in Taiwan on seismic isolation, energy dissipation, and active vibration control”, Proceedings of New Zealand Society for Earthquake Engineering (NZSEE) Annual Conference and Anti-seismic Systems International Society (ASSISi) 15th World Conference on Seismic Isolation, Energy Dissipation, and Active Vibration Control of Structures, 2017.
    [22] Yao, G.C., & Tu, Y.L., “The generation of earthquake damage probability curves for building facilities in Taiwan”, International Symposium on Engineering Lessons Learned from the 2011 Great East Japan Earthquake, 2011.
    [23] Ye, C., Butler, L., Bartek, C., Iangurazov, M., Lu, Q., Gregory, A., Girolami, M. Middleton, C., “A Digital Twin of Bridges for Structural Health Monitoring”, 12th International Workshop on Structural Health Monitoring 2019, 2019.
    [24] Zhu, Y.C., Wagg, D., Cross, E., & Barthorpe, R., “Real-time digital twin updating strategy based on structural health monitoring systems”, In Model Validation and Uncertainty Quantification, Volume 3 (pp. 55-64): Springer, 2020.
    [25] 「九二一集集大地震全面勘災精簡報告」,國家地震工程研究中心研究報告,NCREE-99-033,(1999)。
    [26] 「2018年2月6日花蓮地震勘災報告」,國家地震工程研究中心研究報告,NCREE-18-005,(2018)。
    [27] 內政部營建署,「建築物耐震設計規範與解說」,(2022)。
    [28] 朱世禹,「從日本的E-Defense到建築長照建置計畫(上)」,三聯技術期刊113期,2-10,(2019)。
    [29] 朱世禹,「從日本的E-Defense到建築長照建置計畫(下)」,三聯技術期刊114期,12-18,(2019)。
    [30] 交通部中央氣象局,「花蓮慈濟醫院急診大樓結構物強震監測系統裝設計畫」,(2004)。
    [31] 交通部中央氣象局,「地球物理資料管理系統」,(2005)。
    [32] 交通部中央氣象局,「台灣地區地震與地球物理資料管理系統」,(2020)。
    [33] 江煜陞,「鉛心橡膠支承墊與高阻尼橡膠支承墊多軸向遲滯行為之試驗與分析研究」,碩士論文,國立臺灣科技大學營建工程研究所,台北(2017)。
    [34] 余佩儒,「探討國際上數位分身 (Digital Twin) 在不同領域的應用」,經濟前瞻(186), 91-95,(2019)。
    [35] 林敏朝, 柯鎮洋, 張國鎮, & 曾惠斌,「隔震結構承受實際地震反應之探討—以慈濟醫院花蓮合心樓為例」,結構工程學刊,第25卷,第3期,第25-36頁,(2010)。
    [36] 林鋅銘,「鉛心橡膠支承隔震建築之參數識別」,碩士論文,國立成功大學土木工程研究所,台南(2014)。
    [37] 邱欣怡,「鉛心橡膠基礎隔震建築樓板反應譜之樓高與共振效應評估」,碩士論文,國立成功大學土木工程研究所,台南(2015)。
    [38] 國家地震工程中心,「台灣結構防災監測平台」,(2022)。
    [39] 陳景旭,「鉛心橡膠支承系統等效阻尼比之研究」,碩士論文,國立成功大學土木工程研究所,台南(2014)。
    [40] 葉明紳,「隔震結構等值參數識別與反應預估模型之建立研究」,碩士論文,國立成功大學土木工程研究所,台南(2013)。
    [41] 張國鎮、黃震興、蘇晴茂、李森枏,「結構消能減震控制及隔震設計」,全華科技股份有限公司,(2014)。
    [42] 盧煉元,「結構隔減震技術受課講義」,國立高雄科技大學營建工程系,高雄(2012)。
    [43] 羅仕杰,「結構時變參數之識別研究與快速損壞評估驗證」,碩士論文,國立成功大學土木工程研究所,台南(2010)。

    無法下載圖示 校內:2027-09-06公開
    校外:2027-09-06公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE