| 研究生: |
張珉瀚 Chang, Min-Han |
|---|---|
| 論文名稱: |
使用模擬最佳化之反應曲面法於單一隨機限制式問題 Using Response Surface Methodology of Simulation Optimization in Single Stochastically Constrained Problem |
| 指導教授: |
蔡青志
Tsai, Shing-Chih |
| 學位類別: |
碩士 Master |
| 系所名稱: |
管理學院 - 工業與資訊管理學系 Department of Industrial and Information Management |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 中文 |
| 論文頁數: | 61 |
| 中文關鍵詞: | 模擬最佳化 、超模型 、反應曲面法 、可行性驗證 、懲罰函數 |
| 外文關鍵詞: | Simulation Optimization, Metamodel, Response Surface Methodology, Feasibility Check Procedure, Penalty Method |
| 相關次數: | 點閱:56 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究提出能夠處理具有隨機目標式及單一隨機限制式的模擬最佳化(Simulation Optimization) 演算法,提供決策者在一般實務上可以實際運用的方法,許多商業軟體都具有能夠處理模擬最佳化的啟發式演算法 (例如 OptQuest),但該類型演算法所需要的時間及耗費的抽樣成本龐大,且無法保證每次所找到的解為可行解。因此本研究運用實驗設計與超模型 (Metamodel) 中的反應曲面法 (Response Surface Methodology; RSM),來降低模擬抽樣時所花費的成本,並以數學規劃求解該次迭代的最佳解,結合可行性驗證程序,使得演算法在求解過程中,能在 1-alpha 的情況下保證所找到的解為可行解,另外加入懲罰函數 (Penalty Function) 的概念發展出其他兩種演算法來建構超模型求解,最後以 Clean-Up 程序從可行解當中找到最佳解,將透過已知最佳解的隨機函數來驗證演算法的求解能力。本研究提出了三個演算法分別為使用可行性驗證的M演算法,以及配合懲罰函數的MP_I及MP_II演算法,根據實驗結果可以知道M演算法在限制式的容忍水準內有較佳的表現,MP_I及MP_II則可以在較少的樣本數下找到表現不錯的解,此外三種演算法實驗數值中無論是平均績效指標或是可行性上皆優於 OptQuest。
This study is intended to develop three heuristic algorithms for the purpose of solving a simulation optimization problem with a single stochastic constraint. The proposed algorithms employ metamodel to reduce the required simulation replications, mathematical programming to solve the optimization problem, feasibility check procedure to confirm the feasibility of the obtained solution under a specified confidence level, and clean-up procedure to select the best solution in terms of objective performance. The first heuristic is called the M algorithm, which is combined with the feasibility check procedure, and the other two heuristics, which are combined with the penalty method to fit the regression metamodel, are called MP_I and MP_II. The results show that MP_I and MP_{II perform well with a lower sampling budget, and M performs better in terms of finding a feasible solution within a given tolerance level. The heuristics are compared with OptQuest, which is commonly embedded in Arena, and the results also show that our heuristics outperform OptQuest in terms of objective values and the probability of finding feasible solutions.
徐業良(1995)。工程最佳化設計。國立編譯館。
Andrad´ottir, S., & Kim, S. H. (2010). Fully sequential procedures for comparing constrained systems via simulation. Naval Research Logistics, 57(5), 403-421.
Alam, F. M., McNaught, K. R., & Ringrose, T. J. (2004). A comparison of experimental designs in the development of a neural network simulation metamodel.
Simulation Modelling Practice and Theory, 12(7), 559-578.
Ang¨un, E., Kleijnen, J., den Hertog, D., & G¨urkan, G. (2009). Response surface methodology with stochastic constraints for expensive simulation. Journal of the Operational Research Society, 60(6), 735-746.
Amaran, S., Sahinidis, N. V., Sharda, B., & Bury, S. J. (2016). Simulation optimization: a review of algorithms and applications. Annals of Operations Research, 240(1), 351-380.
Abspoel, S. J., Etman, L. F. P., Vervoort, J., Van Rooij, R. A., Schoofs, A. J. G.,
& Rooda, J. E. (2001). Simulation based optimization of stochastic systems with integer design variables by sequential multipoint linear approximation. Structural and Multidisciplinary Optimization, 22(2), 125-139.
Bechhofer, R. E. (1954). A single-sample multiple decision procedure for ranking means of normal populations with known variances. The Annals of Mathematical Statistics, 16-39.
Barton, R. R. (2015, December). Tutorial: simulation metamodeling. In Proceedings of the 2015 Winter Simulation Conference (pp. 1765-1779). IEEE Press.
Batur, D., & Kim, S. H. (2010). Finding feasible systems in the presence of constraints on multiple performance measures. ACM Transactions on Modeling and Computer Simulation (TOMACS), 20(3), 13.
Barton, R. R., & Meckesheimer, M. (2006). Metamodel-based simulation optimization.
Handbooks in Operations Research and Management Science, 13, 535-574.
Batmaz, I., & Tunali, S. (2003). Small response surface designs for metamodel estimation.
European Journal of Operational Research, 145(2), 455-470.
Box, G.E.P. &Wilson K.B. (1951) On the experimental attainment of optimum conditions.
Journal of the Royal Statistical Society, Series B, 13, 1–45.
Boesel, J., Nelson, B. L., & Kim, S. H. (2003). Using ranking and selection to “clean up” after simulation optimization. Operations Research, 51(5), 814-825.
Chen, V. C., Tsui, K. L., Barton, R. R., & Meckesheimer, M. (2006). A review on design, modeling and applications of computer experiments. IIE Transactions, 38(4), 273-291.
Derringer, G.C., & Suich, R. (1980). Simultaneous optimization of several response variables. Journal of Quality Technology, 12(4), 214–219.
Feyzio˘glu, O., Pierreval, H., & Deflandre, D. (2005). A simulation-based optimization approach to size manufacturing systems. International Journal of Production Research, 43(2), 247-266.
Gupta, S. S. (1956). On a decision rule for a problem in ranking means. Inst. of Statist. Mimeo Series No. 150, Univ. of North Carolina.
Irizarry, M. D. L. A., Wilson, J. R., & Trevino, J. (2001). A flexible simulation tool for manufacturing-cell design, II: response surface analysis and case study. IIE Transactions, 33(10), 837-846.
Jalali, H., & Nieuwenhuyse, I. V. (2015). Simulation optimization in inventory replenishment: a classification. IIE Transactions, 47(11), 1217-1235.
Kleijnen, J. P.(2015). Design and analysis of simulation experiments. New York: Springer.
Kushner, H. J., & Sanvicente, E. (1975). Stochastic approximation of constrained systems with system and constraint noise. Automatica, 11(4), 375-380.
Law, A. M., & Kelton, W. D. (2000). Simulation modeling and analysis, 3rd ed. New York: McGraw-Hill.
Luo, Y., & Lim, E. (2013). Simulation-based optimization over discrete sets with noisy constraints. IIE Transactions, 45(7), 699-715.
Nelson, B. (2013). Foundations and methods of stochastic simulation: A first course. Springer Science & Business Media.
Nezhad, A. M., & Mahlooji, H. (2014). An artificial neural network meta-model for constrained simulation optimization. Journal of the Operational Research Society, 65(8), 1232-1244.
Noguera, J. H., &Watson, E. F. (2006). Response surface analysis of a multi-product batch processing facility using a simulation metamodel. International Journal of Production Economics, 102(2), 333-343.
Park, C., & Kim, S. H. (2015). Penalty function with memory for discrete optimization via simulation with stochastic constraints. Operations Research, 63(5), 1195- 1212.
Santos, M. I. R., & Nova, A. M. P. (2006). Statistical fitting and validation of nonlinear simulation metamodels: A case study. European Journal of Operational Research, 171(1), 53-63.
Simpson, T. W., Poplinski, J. D., Koch, P. N., & Allen, J. K. (2001). Metamodels for computer-based engineering design: survey and recommendations. Engineering with Computers, 17(2), 129-150.
Shi,W., Shang, J., Liu, Z., & Zuo, X. (2014). Optimal design of the auto parts supply chain for JIT operations: Sequential bifurcation factor screening and multi-response surface methodology. European Journal of Operational Research, 236(2), 664-676.
Vinod, V., & Sridharan, R. (2009). Simulation-based metamodels for scheduling a dynamic job shop with sequence-dependent setup times. International Journal of Production Research, 47(6), 1425-1447.
Xu, J., Nelson, B. L., & Hong, J. E. F. F. (2010). Industrial strength COMPASS: A comprehensive algorithm and software for optimization via simulation. ACM Transactions on Modeling and Computer Simulation, 20(1), 3.
Yalc¸ınkaya, O¨ ., & Bayhan, G. M. (2009). Modelling and optimization of average travel time for a metro line by simulation and response surface methodology. European Journal of Operational Research, 196(1), 225-233.
Yu, B., & Popplewell, K. (1994). Metamodels in manufacturing: a review. International Journal of Production Research, 32(4), 787-796.
Zeinali, F., Mahootchi, M., & Sepehri, M. M. (2015). Resource planning in the emergency departments: A simulation-based metamodeling approach. Simulation Modelling Practice and Theory, 53, 123-138.
校內:2023-06-15公開