| 研究生: |
吳聲彥 Wu, Sheng-Yen |
|---|---|
| 論文名稱: |
利用薄膜蒸餾於氨水吸收式冷凍系統之可行性分析 Feasibility analysis of membrane distillation in a ammonia-water absorption refrigeration system |
| 指導教授: |
邱政勳
Chiou, Jenq-Shing |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2004 |
| 畢業學年度: | 92 |
| 語文別: | 中文 |
| 論文頁數: | 107 |
| 中文關鍵詞: | 氨水吸收式 、薄膜蒸餾 |
| 外文關鍵詞: | membrane distillation, ammonia-water absorption chiller |
| 相關次數: | 點閱:99 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
摘要
常用的氟氯碳冷媒(Freon)皆有臭氧層破壞及全球暖化效應之虞,天然無機冷媒因而重新被重視。以氨水溶液的吸收式冷凍系統,不但以無機氨為冷媒,更以較低階的熱源來驅動,從節能與環保之觀點,利用氨水吸收式冷凍系統來達到制冷的效果值得做進一步的探討。
在吸收式氨水系統裡,是利用純氨的蒸發潛熱來吸收熱負荷以達到制冷,氨的純度與制冷性能有甚大的關係,由於氨與水具強親合性,目前爲了從氨水溶液中分離出氨都利用體積龐大的蒸餾塔,本文嘗試使用薄膜分離技術來取代蒸餾塔。
爲了分析及確認取代之可行性,吾人利用ABSIM軟體模擬了五種吸收式系統,此五種系統針對系統中分離的過程,依序由簡單到複雜說明純氨濃度與性能的密切關係,最後再由薄膜蒸餾來取代傳統之分餾程序。
在確認可行性之後,將改良之系統嘗試應用於氣渦輪發電機之進氣冷卻,由於吸收式所需之熱源可由氣渦輪機之排氣來回收取得,而由吸收式得到之冷卻能力又可以冷卻氣渦輪機組之進氣來提升發電量,文中比較了氨水吸收式與溴化鋰吸收式在結合GE 7B發電機組之效果,結果顯示氨水吸收式與氣渦輪機組的組合系統,可以有最高的發電效率(由原來的29.31﹪提升至33.57﹪)及最高之發電量(由原來的52.14MW提升至66.37MW),但氨水系統COP較低,所需付出代價也高出許多。
ABSTRACT
Many popular halocarbon refrigerants (Freons) are found to have Ozone Depletion potential (ODP) and Global Warming potential(GWP), some natural inorganic refrigerants are thus regain people’s attention. Ammonia-water absorption chiller not only used ammonia (an inorganic substance) as the refrigerant, it has another advantage in the use of power source. Instead of electrical power, a relatively low grade heat is used to power the absorption chiller. From the view points of environmental protection and energy conservation, it is meaningful to investigate more in depth about this kind of chiller.
The cooling ability of an ammonia-water absorption chiller is closely related to the evaporation of ammonia only (not water). Since NH3 and H2O have a strong affinity, the separation of NH3 from ammonia-water solution is rather difficult and usually requires a bulky distillation tower. In this study, a new separation technique called membrane distillation (MD) is used to hopefully replace the distillation tower.
To ensure the feasibility of replacement, ABSIM code is applied to simulate five different absorption systems, which, in sequence, has different degree in complication to separate NH3 and can demonstrate the relation between of the degree of NH3 purity and the performance of chiller. Finally, the system with MD (call SECMD in this system) is used to replace the most complicate system using traditional distillation tower.
After the confirmation of feasibility study, the absorption system with MD is used in the integration system coupled with a gas-turbine power system. The heat required by absorption system is recovered from the waste-heat of turbine’s flue gases. The cooling effect obtained from absorption chiller, in turn, is used to cool down the inlet air of gas turbine. power generation capacity can then be boosted by the cooling of inlet-air temperature. Both the LiBr-H2O absorption system and NH3-H2O absorption system are considered in the integration system with a absorption chiller and a power system. Results indicate that the integration of the NH3-H2O absorption system and the gas turbine power generation system has the best improvement in both the thermal efficiency(from 29.31﹪to 33.57﹪)and the output capacity(from 52.14MW to 66.37MW). However, the COP of NH3-H2O absorption system is relatively low, the required heat to power the absorption system is thus much higher.
參考文獻
[1] ASHRAE Handbook of Fundamentals, pp.12, 2004.
[2] 黃秉均,“吸收式冷凍空調系統之分析與設計”,慶齡工業研究中心,研究報告14, 1988.6。
[3] 郭儒家,“吸收式熱泵之種類及其原理”,吸收式冷凍空調技術專輯,中華民國冷凍空調協會,pp.1-6,1999.12。
[4] Farber.E.A, F.M.F.Flanigan, L.Lopez and R.W.polifka,“Operation and Performance of the University of Florida Solar Air-conditioning System”, solar Energy, Vol.10, No.2, pp.91-95, 1996.
[5] Beaton C.F and G.H.Hewitt, physical property data for design engineer, Hemisphere, New York, 1989.
[6] S.Alizadeh, F.Bahar and F.Geoola,“Design And Optimisation of an Absorption Refrigeration System Operated by solar Energy”, Solar Energy, Vol.22, pp.149-154, 1979.
[7] Kaushik S.C and S.C Bhardwaj,“Theoretical Analysis of Ammonia-Water Absorption Cycles For Refrigeration And Space Conditioning System”, Energy Research, Vol.6, pp.205-235, 1982.
[8] Wilkinson.W.H,“What Are the performance Limits for Double-Effect Absorpyion Cycles”, ASHRAE Trans, pp.2429-2441, 2004.
[9] Devalt R.C,“Triple Effect Absorption Chiller Utilizing Two Refrigeration Circuits”, U.S Patent No.4732008, 1998.
[10] P. Srikhirin, S. Aphornratans and S. Chungpaibulpatana,“A review of absorption technologies”, Renewable and Sustainable Energy Reviews, Vol.5, pp.343-372, 2001.
[11] Grossman.G, Michelson.E“A Modular computer Simulation of Absorption System ”, ASHRAE Trans. 91, Partzb, pp.1808-1827, 2004.
[12] Zaltash.A, Grossman.G and R.C. Devault,“Simulation and Analysis of a four-effect Lithium Bromid-water Absorption Chiller”, ASHRAE Trans, part 2, pp.1302-1312, 2004.
[13] Grossman. G, Zaltash. A,“modular simulation of advanced absorption systems”, International Journal of Refrigeration”, pp.531-543, 2001.
[14] F.C. McQuiston, J. D. Parker and J.D. Spitler,“Heating, ventilating, and air conditioning-analysis and design”, Wiley, New York, 1994.
[15] E.P. Whitlow and J.S. Swearingen, Gas Age , pp.19, 1958.
[16] 河東 準、岡田 功,“最新蒸餾理論計算”,復漢出版社,台南,1999。
[17] R. C. Reid, J. M. Prausnitz and T. K. Sherwood,“The properties of gases and liquids”, McGraw-Hill, 1987.
[18] ME. Findley, “Vaporization through porous membranes” , I&EC Process Design and Development, Vol.6, pp.226-230,1967.
[19] ME. Findley, V.V. Tanna, Y.B. Rao, and C.L. Yeh, “Mass and heat transfer relations in evaporation through porous membranes”, AICHE J. 15, pp.483-489, 1969.
[20] A. S. Jonsson, R. Wimmerstedt and A. C. Harrysson, “Membrane distillation - A theoretical study of evaporation through microporous membranes” Desalination. 56 (1985) 237-249.
[21] Fawzi A. Banat and Jana Simandl, “Desalination by membrane distillation: a parametric study”, Separation Science and Technology, Vol.33, pp.201-226,.1998.
[22] K.W. Lawson and D.R. Lloyd, “Review membrane distillation” J. of Membrane Science, Vol.124, pp.1-25,1997.
[23] L. Martinez-Diez and M.I. Vazquez-Gonzalez, “Temperature polarization in mass transport through hydrophobic porous membtanes”, AICHE J, Vol.42, pp. 1844-1852,1996.
[24] 吳奇展,“薄膜蒸餾之海水淡化法之研究”,國立成功大學機械工程研究所碩士論文,1998
[25] 邱宏茂,“在薄膜海淡系統中前處理對薄膜結垢的影響”,國立成功大學機械工程研究所碩士論文,2003。
[26] F.A. Banat and J. Simandl, “Theoretical and experimental study in membrane distillation”, Desalination, Vol.95, pp.39-52,1994.
[27] ABSIM version 5.0, “Modular simulation of absorption systems user’s guide and reference”, Oak Ridge National Laboratory, Tennessee, 1998.
[28] 吳柏慶,“氣渦輪發電機在溼熱氣候下之性能改善”,國立成功大學機械工程研究所碩士論文,2003。
[29] 王輔仁,“氣渦輪發電機廢熱再利用之熱力學與熱經濟分析”,國立成功大學機械工程研究所博士論文,2002。
[30] 陳柏岳,“氨/水吸收式循環應用特性解析研究”,國立台北科技大學冷凍空調研究所碩士論文,2002。
[31] C.P. Arora,“Refrigeration and Air Conditioning”, McGraw-Hill, 2001.
[32] W.F. Stoecker,“Design of Thermal System”, McGraw-Hill, 1989.
[33] Najjar, Y.S.H. , “Enhancement of performance of gas turbine engines by inlet air cooling and cogeneration system”, Applied Thermal Engineering, Vol. 16, pp. 163-173,1996.
[34] Bejan, A., Tsatsaronis G. and Moran, M. J.,“Thermal Design and Optimization”, John Wiley & Sons, New York, 1996.
[35] Irvine, T.F. and Liley, P.E.,“ Steam and Gas Tables with Computer Equations”, Academic, Orlando.
[36] Roberts Engineeing: http://www.robertsengineering.f2s.com。
[37] F.J. Wang and J.S. Chiou“Integration of steam injection and inlet air cooling for a gas turbine generation system”, Energy Conversion and Management, Vol.45, pp. 15-26, 2004.
[38] F.S José, Jaime Sieres and Vázque Manuel,“Distillation column configurations in ammonia-water absorption refrigeration systems
”, International Journal of Refrigeration, Vol.37, pp.28-34, 2003.