簡易檢索 / 詳目顯示

研究生: 蔡其叡
Tsai, Chi-Jui
論文名稱: 有機電致發光元件之載子傳輸機制研究
Study on Carriers Transport Mechanisms in Organic Light-Emitting Diode
指導教授: 陳鐵城
Chen, Tei-Chen
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2004
畢業學年度: 92
語文別: 中文
論文頁數: 90
中文關鍵詞: 有機電致發光元件模擬
外文關鍵詞: OLED, Modeling
相關次數: 點閱:69下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 有機電致發光元件在許多方面有極佳的優勢,但是目前OLED尚有許多問題待研究改善,理論的模擬將有助於實驗的發展。
    本文分三種模型討論,以程式模擬比較有機電致發光元件在不同的單載子元件結構,其電流密度與電壓之電性曲線。所討論之三種模型分別為SCLC加上考慮場相依的載子移動率模型、考慮缺陷指數分佈存在之TCLC(trap-charge limited conduction)理論模型與考慮電場影響之Poole-Frenkel效應且缺陷的存在理論的FDTO(field dependent trap occupancy)模型,其中依其缺陷分佈的假設還細分為單能階缺陷與指數分佈缺陷。
    以此三種模型來模擬分析各種單載子電洞元件(hole-only device)及單載子電子元件(electron-only device),我們所討論的有機層有PPV、MEH-PPV與Alq3等不同材料,在不同的厚度、溫度等參數下,比較其他文獻所實驗出以及用其他模型所模擬出的數據。有機材料配合不同的電極有不同的電性曲線,藉由本文探討其元件結構之模型模擬的適用性及J(V)曲線之變化。我們以程式所建立之模型成功地模擬出單載子元件。

    OLED is excellent in several ways. However, there are still many problems to be improved. The calculations of a model and the development of experiments will complement each other.
    In this study, three models are used to calculate the J(V) characteristics for several different devices. In the first model that we use is a model of the space-charge limited conduction (SCLC) with field-dependent carrier mobility. In the second model, an exponential distribution of traps is assumed to be a theory of trap-charge limited conduction (TCLC). The third model is the field dependent trap occupancy (FDTO) model taking into account the Poole-Frenkel affect and the change in the occupancy of the traps due to the high electrical fields present in the materials. There are two parts we studied in the FDTO model, single energy level traps and exponentially distributed traps.
    The current-voltage characteristics of several hole-only devices and electron-only devices are calculated with the models. The organic layer of the devices are PPV and MEH-PPV and Alq3. As the change of the parameters in the model, such as the thickness and temperature, we compare the calculations of the different methods and the experimental results of different groups with the models that we used. Our programs of models successfully describes the J(V) characteristics of the single carrier devices.

    中文摘要 i Abstract ii 誌謝 iii 目錄 iv 表目錄 vii 圖目錄 viii 符號說明 xii 英文字母 xii 希臘字母 xiv 符號下標 xiv 英文縮寫 xv 第一章 緒論 1 1.1前言 1 1.2發展沿革與文獻回顧 2 1.3研究動機 4 1.4本文架構 6 第二章 有機電致發光元件之原理與結構 12 2.1有機電致發光元件的發光原理 12 2.2量子效率 14 2.2.1電荷注入 15 2.2.2電荷傳輸 17 2.2.2單重項態與三重項態 19 2.2.3輻射光發光效率 20 2.2.4光輸出的耦合 21 2.3有機電致發光元件之架構 22 2.4有機發光元件的全彩化 26 2.5有機發光元件的製程技術 27 第三章 理論與模型 32 3.1有機層界面之載子注入 32 3.2空間電荷限制傳輸(SCLC) 33 3.2.1 Mott-Gurney square law 33 3.2.2場相依移動率(FDM)模型 35 3.3載子捕捉缺陷 37 3.3.1淺層缺陷 38 3.3.2深層缺陷 39 3.4 Poole-Frenkel效應 40 3.5缺陷電荷限制傳輸(TCLC) 41 3.6 場相依缺陷佔據(FDTO)模型 44 3.6.1單能階缺陷 46 3.6.2指數分佈缺陷 47 第四章 結果分析與討論 50 4.1模型與假設 50 4.2實驗規劃 52 4.3 FDM與EDT模擬結果探討 53 4.3.1場相依移動率FDM模擬結果 54 4.3.2指數分佈缺陷EDT模擬結果 56 4.3.3 結果探討比較 58 4.4 FDTO模擬結果探討 59 4.4.1單載子電洞元件模擬結果 60 4.4.2單載子電子元件模擬結果 67 4.4.3 結果探討比較 74 4.5模擬結果討論 77 第五章 結論與展望 81 5-1結論 81 5-2未來展望 82 參考文獻 84 附錄A 88 自述 90

    [1]P. Pope, H. P. Kallmann, P. J. Magnante, J. Chem. Phys., 38, 2042, 1963.
    [2]W. Helfrich, W. G. Schneider, Phys. Rev. Lett., 14, 229, 1965.
    [3]D. F. Williams, M. Schadt, Proc. IEEE, 58, 476, 1970.
    [4]J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, P. L. Burns, A. B. Holmes, Nature, 347, 539, 1990.
    [5]Junji Kido, Kenichi Hongawa, Katsuro Okuyama, Katsutoshi Nagai., Appl. Phys. Lett., 63, 2627, 1993.
    [6]Miyata. S, Nalwa. H. S., “Organic Electroluminescent Materials and Devices”, Gordon and Breach Science Pubishers, 1997.
    [7]KODAK, Display Products: Passive Displays http://www.kodak.com
    [8]J. R. Sheats, H. Antoniadis, M. Hueschen, W. Leonard, J. Miller, R. Moon, D. Roitman, A. Stocking, Science 273, 884, 1996.
    [9]http://china.nikkeibp.co.jp
    [10]顧鴻壽, "光電有機電激發光顯示器技術與應用", 新文京開發出版社, 台北縣, 2001.
    [11]N. K. Patel, S. Cinà, J. H. Burroughes, IEEE J. Sel. Topics In Quan. Elec., Vol. 8, No. 2, 2002.
    [12]F. Zhu, K. Zhang, C. H. Huan, and A. T. Wee, Mat. Res. Soc. Symp. Proc., Vol. 598, p. BB11.11.1., 2000 .
    [13]D. J. Milliron, I. G. Hill, C. Shen, A. Kahn, and J. Schwartz, J. Appl. Phys., Vol. 87, pp. 572-576, 2000.
    [14]A. J. Heeger, I. D. Parker, Y. Yang, Synth. Met., Vol. 85, pp.23-29, 1994.
    [15]Y. Scott et al., Synt. Met., Vol. 85, p. 1197, 1997.
    [16]K. Murata, S. Cinà, N. Greenham, Appl. Phys. Lett., Vol. 79, pp.1193-1195, 2001.
    [17]V. Choong, Y. Park, Y. Gao, T. Wehrmeister, K. Műllen, B. R. Hsieh, C. W. Tang, Appl. Phys. Lett., Vol. 69, pp. 1492, 1996.
    [18]L. S. Hung, C. W. Tang, US. Pat. No.5, 677, 572, 1997.
    [19]C. W. Tang, S. A. VanSlyke, Appl. Phys. Lett., Vol. 51, pp.913, 1987.
    [20]C. W. Tang, S. A. VanSlyke, C. H. Chen, J. Appl. Phys.,Vol. 65, pp.3610, 1989.
    [21]M. A. Baldo, D. F. Brlen, S. R. Forrest, US. Pat. No. 6, 097, 147, 2000.
    [22]S. Miyata, H. S. Nalwa, Organic Electroluminescent Materials and Devices, Gordon and Breach Science Publishers, Chap 8, 1997.
    [23]F. Li, H. Tang, Appl. Phys. Lett., Vol. 70, pp. 1233, 1997.
    [24]P. Piromerun, H. Oh, Y. Shen, G. G. Malliaras, J. C. Scott, P. J. Brock, Appl. Phys. Lett., Vol. 71, pp. 2403-2405, 2000.
    [25]G. E. Jabbour, B. Kippelen, N. R. Armstrong, N. Peyghambarian, Appl. Phys. Lett., Vol. 73, pp. 1185-1187, 1998.
    [26]S. M. Kelly, Flat Panel Displays Advanced Organic Materials, The Royal Society of Chemistry, Cambridge, 2000.
    [27]M. A. Lampert, P. Mark, Current Injection in Solids, Academic, New York, 1970.
    [28]W. R. Salaneck et al., Adv. Mater., Vol. 8, p. 48, 1996.
    [29]R. R. Chance, A. Prock, R. Sibey, J. Chem. Phys., Vol. 62, p. 2245, 1975.
    [30]I. Schnitzer, E. Yablonovitch, C. Caneau, T. J. Gmitter, A. Scherer, Appl. Phys. Lett. Vol. 63, pp. 2174, 1993.
    [31]W. B. Im, H. K. Hwang, J. G. Lee, K. Han, Y. Kim, Appl. Phys. Lett., Vol. 79, pp. 1387, 2001.
    [32]P. E. Burrows, G. Gu, V. Bulovi´c, Z. Shen, S. R. Forrest, M. E. Thompson, IEEE TRANSACTIONS ON ELECTRON DEVICES, Vol. 44, No. 8, 1997.
    [33]I. D. Parker, J. Appl. Phys., Vol. 75, No. 3, 1656, 1994.
    [34]D. M. Pai, J. Chem. Phys. Vol. 52, 2285, 1970.
    [35]P. W. M. Blom, M. J. M. de Jong, M. G. van Munster, Phys. Rev. B, Vol. 55, No. 2, R656 1997.
    [36]K. C. Kao, W. Hwang, Electrical Transport in Solids, Pergamon, Oxford, 1981.
    [37]Y. Chan, T. S. Jayadevaiah, Phys. Stat. Sol. (b), 49, K129-33, 1972.
    [38]P. E. Burrows, Z. Shen, V. Bulovic, D. M. McCarty, S. R. Forrest, J. A. Cronin, M. E. Thompson, J. Appl. Phys. Vol. 79, pp. 7991, 1996.
    [39]A. J. Campbell, D. D. C. Bradley, D. G. Lidzey, J. Appl. Phys. Vol. 82 pp. 6326, 1997.
    [40]Vikram Kumar, S. C. Jain, Ashok K. Kapoor, Wim Geens, Tom Aernouts, J. Poortmans, and R. Mertens, J. Appl. Phys. Vol. 92, pp. 7325, 2002.
    [41]P. C. Arnett, N. Klein, J. Appl. Phys. Vol. 46, 1399, 1975.
    [42]B. K. Crone, I. H. Campbell, P. S. Davids, D. L. Smith, J. Appl. Phys. Vol. 86, pp. 5767, 1999.
    [43]P. S. Davids, I. H. Campbell, D. L. Smith, J. Appl. Phys., 82, 12, 1997.
    [44]P. W. M. Blom, M. J. M. de Jong, J. J. M. Vleggaar, Appl. Phys. Lett. ,68, 3308, 1996.
    [45]E. M. Conwell, M. W. Wu, Appl. Phys. Lett. 70, 14, 1997.
    [46]M. A. Baldo, S. R. Forrest, Phys. Rev. B. Vol. 64, 085201, 2001.
    [47]I. H. Campbell, D. L. Smith, Appl. Phys. Lett., Vol. 74, 561, 1999.
    [48]Y. Q. Peng, F. J. Zhang, X. Zhang, D. S. Zheng, Appl. Phys. A, Vol. 78, 369, 2004.
    [49]朱秋萍, 雙層有機發光二極體之電荷傳輸機制的分析, 國立中山大學電機工程研究所, 碩士論文, 2002。
    [50]詹逸民, 高效能有機發光元件製作技術之研究, 國立成功大學化學工程研究所, 博士論文, 2004。

    下載圖示 校內:2005-07-12公開
    校外:2005-07-12公開
    QR CODE