| 研究生: |
魏立帆 Wei, Li-Fan |
|---|---|
| 論文名稱: |
焚化爐空氣冷凝器之流場特性研究 The Analysis of The Flow Characteristics for Incinerator Air-Cooled Condenser |
| 指導教授: |
張錦裕
Jang, Jiin-Yuh |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2005 |
| 畢業學年度: | 93 |
| 語文別: | 中文 |
| 論文頁數: | 138 |
| 中文關鍵詞: | 流場觀測 、質點影像測速系統 、數值模擬 、焚化爐蒸汽冷凝器 |
| 外文關鍵詞: | flow visualization, numerical simulation, incinerator air-cooled condenser, DPIV |
| 相關次數: | 點閱:106 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文利用數值分析以及數位質點影像測速系統(Digital Particle Image Velocimetry, 簡稱DPIV)針對等比例縮小之焚化爐蒸汽冷凝器模型進行流場特性之比對,並利用數值分析的方式來模擬原尺寸焚化爐蒸汽冷凝器之速度場以及溫度場的分佈,同時針對不同帷幕高度及開孔面積,模擬在不同條件下之速度場及溫度場之差異,並對帷幕內部之流場特性加以分析。
實驗部份是製作等比例縮小之蒸汽冷凝器,利用數位質點影像測速系統擷取中央截面之二維速度分佈,帷幕部份分為無開孔及開孔兩個,其結果顯示在帷幕無開孔時,氣流流出帷幕後會向外擴散,而帷幕開孔兩個時,氣流確實由開孔處流出,並受到上方氣流之牽引而隨之往上方流動,再以相同條件建立物理模型進行數值分析,將數值結果與實驗結果進行比對,結果顯示數值分析以及數位質點影像測速系統之結果相近,具有參考價值。
在理論分析中,使用那維-史都克(Navier-Stokes equation)作為流場的統御方程式配合能量守恆方程求解焚化爐蒸汽冷凝器之速度及溫度之分佈。數值方法中以有限容積法為離散方法,並使用SIMPLEC法求解流場之分佈。本文之結果顯示,帷幕高度及開孔大小對焚化爐蒸汽冷凝器之散熱效果有極大的影響,帷幕內部之溫度分佈隨帷幕高度及開孔面積之增加而降低,在不同的使用環境下,帷幕高度之選擇及開孔面積的大小為增加化爐蒸汽冷凝器散熱效率的重要因素。
Numerical method was used to predict velocity, temperature distribution in the incinerator air-cooled condenser, and the flow characteristics in the glass wall were also discussed in this study. In the 2-D numerical analytical method with original size model, try to change the height of the glass wall and the area of hole. In the 3-D numerical analytical methods with reduced size model, try to change the area of hole. The DPIV (Digital Particle Image Velocimetry) was also carried out in a reduced size model to compare the flow field s with the numerical results.
The experiment was used the DPIV with reduced size model to pick up a 2-D velocity field. we used two kinds of wall, which one has no hole and the other has two holes. The results indicated that the airflow move off the glass wall, it will spread into the atmosphere. When the glass wall has two holes, the part of airflow will pass through the holes. Compare with the 3-D numerical analytical and the experiment, the results were similar.
The Navier-Stokes equations with the energy equations were solved in this study. The SIMPLEC algorithm with finite volume based scheme was used in this numerical analysis. The results indicated that the height of the glass wall and the area of hole will influence temperature distribution in the glass wall, heighten the height of the glass wall and magnify the area of hole can reduce temperature in the glass wall of the incinerator air-cooled condenser.
1. Beamer, H. E. and Cowell, T. A., Heat Exchange Cooling fin With Varying Louver Angle, US patent 5730214, 1998.
2. T. Kuppan, Heat Exchanger Design Handbook, Marcel Dekker, Inc., New York, pp. 217-228. 2000.
3. Ganapathy, V., Design of Aircooled Exchangers-Process Design Eriteria, in Process Heat Exchange, Chemical Engineering Magazine, (V. Cavaseno, ed.), McGraw-Hill, New York, pp. 418-425, 1979.
4. Mukherjee, R., Avoid operating problems in air cooled heat exchangers, Hydro. Proc., pp.69-76, March 1997.
5. Mori, Y. and Nakayama, W., High performance mist cooled condensers for geothermal binary cycle plants. In Heat Transfer in Energy Problems (Edited by T. Mizushina and W. J. Yang), Hemisphere, Washington, DC, pp. 189-196, 1982.
6. Johnson, B. M., Zaioudek, F. R., Fricke, H. D., Heenbrook, R.G.. and Bartz, JA., A large-scale experimental evaluation of an advanced concept for dry/wet cooling of power stations, U.S./U.S.S.R. Symposium on Waste Heat, Washington, DC. Oct., 1979.
7. Leidenfrost, W. and Korenic, B., Analysis of evaporative cooling and enhancement of condenser efficiency and of coefficient of performance, Warme- und Stoffubertr. 12, 5-23, 1979.
8. Finlay, I. C., and McMillan, T., Pressure drop, heat and mass transfer during air/water mist flow across a bank of tubes, National Engineering Laboratory, NEL-Report No. 474, 1970.
9. Oshima, T., luchi, S., Yoshida, A. and Takamatsu, K., Design calculation method of air-cooled heat exchangers with water spray. Heat Transfer-Jap.Res. 1,47-55, 1972.
10. Tree, D. R., Goldshmit, V. W, Garrett, R. W. and Kach, E., Effect of water sprays on heat transfer of a fin and tube heat exchanger, Proc. 6th International Heat Transfer Conference, HX-26, 339-344,1978.
11. Carpenter, R. A., Heat transfer coefficients for two-phase (water/air) flow over a tube bank, in United States Air Force, Report No. GNE/PH/72-2, May,1972.
12. Simpson, H. C., Beggs, G. C. and Sen, G. N., Heat transfer from extended surface tubes to and air/water mist, Proceedings of the Symposium on Multiphase Flow Systems, Inst. Chem. Engrs Ser., No. 38, Paper No. H3, 1-22,1974.
13. Finlay, I. C., Air/water sprays as potential coolants for pin-tinned cold plates, in Aerospace Research Laboratories ARL 71-0087, 1971.
14. Yang, W. J. and Dark, D. W, Spray cooling of air-cooled compact heat exchangers, Int. J. in Heat Mass Transfer 18, 311-317, 1975.
15. Aihara, T. and Saga, R., Performance of a cooling unit with a mist generating blower, Trans, Japan Soc. In Mech. Engrs, Ser. B 49, 2410-2417,1983.
16. Pescod, D., A heat exchanger for energy saving in an air-conditioning plant, Trans. In ASHRAE 85, 238-251,1979.
17. Hayashi, Y. and Takimoto, A., Heat transfer enhancement with mist flow. In Heat Transfer in High Technology and Power Engineering (Edited by W. J. Yang and Y. Mori), 356-367, Hemisphere, Now York, 1987.
18. Maclaine-Cross, I. L. and Banks, P. J., A general theory of wet surface heat exchangers and its application to regenerative evaporative cooling, in Trans.ASME, Ser. C 103, 579-585, 1981.
19. Saunders E. A. D., Heat Exhangers Selection, Design and Construction, Longman Scientific & Technical, New York, pp. 85-103, 1988.
20. Glass, J. Specifying and Rating Fans, in Chem. Eng. 27 March, pp. 120-124, 1978.
21. Kroger, D. G., Experimental heat transfer, fluid mechanics and thermodynamics in the development of large air cooled heat exchangers, in Experimental Heat Transfer, Fluid Mechanics and Thermo-dynamics M. D. Kelleher et al., eds., Elservier Science Publishers, Amsterdam, pp. 135-141, 1993.
22. Monroe, R. C., Energy-saving fans, in Chemical Engineering Progress (DEC.) pp. 28-32, 1982
23. Rubin, F. L., Power requirement are lower for air-cooled heat exchangers with variable-pitch fan blades, in Oil & Gas Journal (11 Oct.), pp. 165-167, 1983
24. Brown, J. W., and Benkley, G. J., Heat exchangers in cold service-A contractor's view, in Chem. Eng. Prog., 70, pp. 59-62, 1974.
25. API Standard 661, Air Cooled Heat Exchangers for General Refinery Service, 7th edition, American Petroleum Institute, Washington, D.C., 1978.
26. Keane, R.D., Adrian, R.J., Theory of Cross-Correlation of PIV Image, Applied Scientific Research, Vol. 19. pp. 191-215.1992.
27. Prasad, S. K., Asrian, R. J., Landreth, C. C., Offutt, P. W., Effect of Resolution on the Speed and Accuracy of Particle Image Velocimetry Interrogation, Exp. In Fluids. Vol. 13. pp. 105-116.1992.
28. Westerweel, J., Efficient Detection of Spurious Vectors in Particle Image Velocimetry Data, Exp. In Fluids. Vol. 16. pp. 236-247.1994.
29. Westerweel, J., Dabiri, D., Gharib, M., The Effect of a Discrete Window Offset on the Accuracy of Ctoss-Correlation Analysis of Digital PIV Recordings, Exp. In Fluids. Vol. 23, pp. 20-28.1997.
30. Raffel, M., Kompenhans, J., Error Analysis for PIV Recording Utilizing Image Shifting, Proc. 7th International Symposium on Application of Laser Techniques to Fluid Mechanics, Lisbon, July, p. 35, 1994.
31. Fincham, S. M., Spedding, G. R., Low Cost High Resolrtion DPIV for Measurement of Turbulent Flow, Exp. In Fluids. Vol. 23. pp. 449-462. 1997.
32. Florio, D. Di., Felice, F. Di., Romano, G. P., Elefante, M., Propeller Wake Structure at Different Advance Coefficients by means of PIV, Proceeding of PSFVIP-3, Maui, Hawaii, U.S.A. March 18-21 2001
33. Keane, R. D., Adrian, R. J., Optimization of Particle Image Velocimeters, Part 1 : Multiple Pulsed System, Meas. Sci. Technol. Vol. 1 pp. 1202-1215, 1997.
34. Westerweel, J., Fundamentals of Digital Particle Image Velocimetry, Meas. Sci. Technol. Vol. 8,pp.1379-1392. 1997
35. Son, S. Y., Kihm, K. D., Ham, J. C., PIV Flow for Heat Transfer Characterization in Two-Pass Square Cannel With Smooth and 90° Ribbed Walls, International Journal of Heat Transfer, Vol. 45,pp. 4809-4822, 2002.
36. Ekkad, S., Han, J. C., Detailed Heat Transfer Distributions in Two-Pass Square Channels With Rib Turbulators, Int. J. Hest Mass Transfer.Vol. 40 525-2537. 1997.
37. Keane, R. D., Adrian, R. J., Optimization of Particle Image Velocimeters, Part 2 : Multiple Pulsed System, Meas. Sci. Technol. Vol. 2. pp. 963-974, 1997.
38. Adrian, R. J., Dynamic Range of Velocity and Spatial Resolution of Particle Image Velocimetry, Meas. Sci. Technol. Vol. 8. pp. 1393-1398. 1997.
39. Launder B. E. and Spalding A. D., Mathematical Models of Turbulence, Academic, London, pp. 90-100, 1972.
40. Liakopoulos A., Explicit Representation of the Complete Velocity Profile in a Turbulent Boundary Layer, AIAA Journal, Vol. 22, pp. 844-846, 1984.
41. Jayetilleke, F., Kadinski, L., and Scha¨fer, M., A Multigrid Solver for Fluid Flow and Mass Transfer Coupled with Grey-Body Surface Radiation for the Numerical Simulation of Chemical Vapor Deposition Processes, J. Cryst. Growth, 146, pp. 202-208, 1995.
42. Patankar, S. V., Numerical Heat Transfer and Fluid Flow, Hemisphere Publishing Corporation, New York, 1980.
43. Van Doormaal J. P. and Raithby F. D., Enhancements of the SIMPLE method for tredicting incompressible fluid flows, Numerical Heat Transfer, Vol. 7, pp. 147-163, 1984.
44. CFD-ACE(U), CFD Research Corporation, Alabama, USA, 2002.