簡易檢索 / 詳目顯示

研究生: 魏立帆
Wei, Li-Fan
論文名稱: 焚化爐空氣冷凝器之流場特性研究
The Analysis of The Flow Characteristics for Incinerator Air-Cooled Condenser
指導教授: 張錦裕
Jang, Jiin-Yuh
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 138
中文關鍵詞: 流場觀測質點影像測速系統數值模擬焚化爐蒸汽冷凝器
外文關鍵詞: flow visualization, numerical simulation, incinerator air-cooled condenser, DPIV
相關次數: 點閱:106下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •  本文利用數值分析以及數位質點影像測速系統(Digital Particle Image Velocimetry, 簡稱DPIV)針對等比例縮小之焚化爐蒸汽冷凝器模型進行流場特性之比對,並利用數值分析的方式來模擬原尺寸焚化爐蒸汽冷凝器之速度場以及溫度場的分佈,同時針對不同帷幕高度及開孔面積,模擬在不同條件下之速度場及溫度場之差異,並對帷幕內部之流場特性加以分析。

     實驗部份是製作等比例縮小之蒸汽冷凝器,利用數位質點影像測速系統擷取中央截面之二維速度分佈,帷幕部份分為無開孔及開孔兩個,其結果顯示在帷幕無開孔時,氣流流出帷幕後會向外擴散,而帷幕開孔兩個時,氣流確實由開孔處流出,並受到上方氣流之牽引而隨之往上方流動,再以相同條件建立物理模型進行數值分析,將數值結果與實驗結果進行比對,結果顯示數值分析以及數位質點影像測速系統之結果相近,具有參考價值。

     在理論分析中,使用那維-史都克(Navier-Stokes equation)作為流場的統御方程式配合能量守恆方程求解焚化爐蒸汽冷凝器之速度及溫度之分佈。數值方法中以有限容積法為離散方法,並使用SIMPLEC法求解流場之分佈。本文之結果顯示,帷幕高度及開孔大小對焚化爐蒸汽冷凝器之散熱效果有極大的影響,帷幕內部之溫度分佈隨帷幕高度及開孔面積之增加而降低,在不同的使用環境下,帷幕高度之選擇及開孔面積的大小為增加化爐蒸汽冷凝器散熱效率的重要因素。

     Numerical method was used to predict velocity, temperature distribution in the incinerator air-cooled condenser, and the flow characteristics in the glass wall were also discussed in this study. In the 2-D numerical analytical method with original size model, try to change the height of the glass wall and the area of hole. In the 3-D numerical analytical methods with reduced size model, try to change the area of hole. The DPIV (Digital Particle Image Velocimetry) was also carried out in a reduced size model to compare the flow field s with the numerical results.

     The experiment was used the DPIV with reduced size model to pick up a 2-D velocity field. we used two kinds of wall, which one has no hole and the other has two holes. The results indicated that the airflow move off the glass wall, it will spread into the atmosphere. When the glass wall has two holes, the part of airflow will pass through the holes. Compare with the 3-D numerical analytical and the experiment, the results were similar.

     The Navier-Stokes equations with the energy equations were solved in this study. The SIMPLEC algorithm with finite volume based scheme was used in this numerical analysis. The results indicated that the height of the glass wall and the area of hole will influence temperature distribution in the glass wall, heighten the height of the glass wall and magnify the area of hole can reduce temperature in the glass wall of the incinerator air-cooled condenser.

    中文摘要…………I 英文摘要…………II 誌謝…………III 目錄…………IV 表目錄…………VII 圖目錄…………VIII 符號說明…………XII 第一章 緒論…………1 1.1 前言…………1 1.2 氣冷式冷凝器(Air-Cooled Condenser, ACC)簡介…………3 1.3 研究背景…………6 1.4 質點影像測速(Particle Image Velocimetry, PIV)簡介…………11 1.5 研究目的及方法…………13 第二章 理論分析…………26 2.1 物理模型…………26 2.2 基本假設…………26 2.3 統御方程式…………27 2.4 紊流模式…………28 2.5 邊界條件…………37 第三章 數值方法…………44 3.1 概述…………44 3.2 格點位置之配置…………44 3.3 數值模型…………45 3.4 數值方法…………45 3.5 解題流程…………50 3.6 格點測試…………50 3.7 收斂條件…………51 第四章 實驗設備與方法…………58 4.1 數位質點影像測速系統(DPIV)…………58 4.2 油霧質點產生器…………60 4.3 試件製作…………61 4.4 實驗方法…………62 4.5 實驗前置作業…………63 第五章 結果與討論…………71 5.1 縮小尺度三維數值模擬及實驗結果比較…………72 5.2 原尺度二維數值模擬…………73 第六章 結論…………132 參考文獻…………133

    1. Beamer, H. E. and Cowell, T. A., Heat Exchange Cooling fin With Varying Louver Angle, US patent 5730214, 1998.

    2. T. Kuppan, Heat Exchanger Design Handbook, Marcel Dekker, Inc., New York, pp. 217-228. 2000.

    3. Ganapathy, V., Design of Aircooled Exchangers-Process Design Eriteria, in Process Heat Exchange, Chemical Engineering Magazine, (V. Cavaseno, ed.), McGraw-Hill, New York, pp. 418-425, 1979.

    4. Mukherjee, R., Avoid operating problems in air cooled heat exchangers, Hydro. Proc., pp.69-76, March 1997.

    5. Mori, Y. and Nakayama, W., High performance mist cooled condensers for geothermal binary cycle plants. In Heat Transfer in Energy Problems (Edited by T. Mizushina and W. J. Yang), Hemisphere, Washington, DC, pp. 189-196, 1982.

    6. Johnson, B. M., Zaioudek, F. R., Fricke, H. D., Heenbrook, R.G.. and Bartz, JA., A large-scale experimental evaluation of an advanced concept for dry/wet cooling of power stations, U.S./U.S.S.R. Symposium on Waste Heat, Washington, DC. Oct., 1979.

    7. Leidenfrost, W. and Korenic, B., Analysis of evaporative cooling and enhancement of condenser efficiency and of coefficient of performance, Warme- und Stoffubertr. 12, 5-23, 1979.

    8. Finlay, I. C., and McMillan, T., Pressure drop, heat and mass transfer during air/water mist flow across a bank of tubes, National Engineering Laboratory, NEL-Report No. 474, 1970.

    9. Oshima, T., luchi, S., Yoshida, A. and Takamatsu, K., Design calculation method of air-cooled heat exchangers with water spray. Heat Transfer-Jap.Res. 1,47-55, 1972.

    10. Tree, D. R., Goldshmit, V. W, Garrett, R. W. and Kach, E., Effect of water sprays on heat transfer of a fin and tube heat exchanger, Proc. 6th International Heat Transfer Conference, HX-26, 339-344,1978.

    11. Carpenter, R. A., Heat transfer coefficients for two-phase (water/air) flow over a tube bank, in United States Air Force, Report No. GNE/PH/72-2, May,1972.

    12. Simpson, H. C., Beggs, G. C. and Sen, G. N., Heat transfer from extended surface tubes to and air/water mist, Proceedings of the Symposium on Multiphase Flow Systems, Inst. Chem. Engrs Ser., No. 38, Paper No. H3, 1-22,1974.

    13. Finlay, I. C., Air/water sprays as potential coolants for pin-tinned cold plates, in Aerospace Research Laboratories ARL 71-0087, 1971.

    14. Yang, W. J. and Dark, D. W, Spray cooling of air-cooled compact heat exchangers, Int. J. in Heat Mass Transfer 18, 311-317, 1975.

    15. Aihara, T. and Saga, R., Performance of a cooling unit with a mist generating blower, Trans, Japan Soc. In Mech. Engrs, Ser. B 49, 2410-2417,1983.

    16. Pescod, D., A heat exchanger for energy saving in an air-conditioning plant, Trans. In ASHRAE 85, 238-251,1979.

    17. Hayashi, Y. and Takimoto, A., Heat transfer enhancement with mist flow. In Heat Transfer in High Technology and Power Engineering (Edited by W. J. Yang and Y. Mori), 356-367, Hemisphere, Now York, 1987.

    18. Maclaine-Cross, I. L. and Banks, P. J., A general theory of wet surface heat exchangers and its application to regenerative evaporative cooling, in Trans.ASME, Ser. C 103, 579-585, 1981.

    19. Saunders E. A. D., Heat Exhangers Selection, Design and Construction, Longman Scientific & Technical, New York, pp. 85-103, 1988.

    20. Glass, J. Specifying and Rating Fans, in Chem. Eng. 27 March, pp. 120-124, 1978.

    21. Kroger, D. G., Experimental heat transfer, fluid mechanics and thermodynamics in the development of large air cooled heat exchangers, in Experimental Heat Transfer, Fluid Mechanics and Thermo-dynamics M. D. Kelleher et al., eds., Elservier Science Publishers, Amsterdam, pp. 135-141, 1993.

    22. Monroe, R. C., Energy-saving fans, in Chemical Engineering Progress (DEC.) pp. 28-32, 1982

    23. Rubin, F. L., Power requirement are lower for air-cooled heat exchangers with variable-pitch fan blades, in Oil & Gas Journal (11 Oct.), pp. 165-167, 1983

    24. Brown, J. W., and Benkley, G. J., Heat exchangers in cold service-A contractor's view, in Chem. Eng. Prog., 70, pp. 59-62, 1974.

    25. API Standard 661, Air Cooled Heat Exchangers for General Refinery Service, 7th edition, American Petroleum Institute, Washington, D.C., 1978.

    26. Keane, R.D., Adrian, R.J., Theory of Cross-Correlation of PIV Image, Applied Scientific Research, Vol. 19. pp. 191-215.1992.

    27. Prasad, S. K., Asrian, R. J., Landreth, C. C., Offutt, P. W., Effect of Resolution on the Speed and Accuracy of Particle Image Velocimetry Interrogation, Exp. In Fluids. Vol. 13. pp. 105-116.1992.

    28. Westerweel, J., Efficient Detection of Spurious Vectors in Particle Image Velocimetry Data, Exp. In Fluids. Vol. 16. pp. 236-247.1994.

    29. Westerweel, J., Dabiri, D., Gharib, M., The Effect of a Discrete Window Offset on the Accuracy of Ctoss-Correlation Analysis of Digital PIV Recordings, Exp. In Fluids. Vol. 23, pp. 20-28.1997.

    30. Raffel, M., Kompenhans, J., Error Analysis for PIV Recording Utilizing Image Shifting, Proc. 7th International Symposium on Application of Laser Techniques to Fluid Mechanics, Lisbon, July, p. 35, 1994.

    31. Fincham, S. M., Spedding, G. R., Low Cost High Resolrtion DPIV for Measurement of Turbulent Flow, Exp. In Fluids. Vol. 23. pp. 449-462. 1997.

    32. Florio, D. Di., Felice, F. Di., Romano, G. P., Elefante, M., Propeller Wake Structure at Different Advance Coefficients by means of PIV, Proceeding of PSFVIP-3, Maui, Hawaii, U.S.A. March 18-21 2001

    33. Keane, R. D., Adrian, R. J., Optimization of Particle Image Velocimeters, Part 1 : Multiple Pulsed System, Meas. Sci. Technol. Vol. 1 pp. 1202-1215, 1997.

    34. Westerweel, J., Fundamentals of Digital Particle Image Velocimetry, Meas. Sci.    Technol. Vol. 8,pp.1379-1392. 1997

    35. Son, S. Y., Kihm, K. D., Ham, J. C., PIV Flow for Heat Transfer Characterization in Two-Pass Square Cannel With Smooth and 90° Ribbed Walls, International Journal of Heat Transfer, Vol. 45,pp. 4809-4822, 2002.

    36. Ekkad, S., Han, J. C., Detailed Heat Transfer Distributions in Two-Pass Square Channels With Rib Turbulators, Int. J. Hest Mass Transfer.Vol. 40 525-2537. 1997.

    37. Keane, R. D., Adrian, R. J., Optimization of Particle Image Velocimeters, Part 2 : Multiple Pulsed System, Meas. Sci. Technol. Vol. 2. pp. 963-974, 1997.

    38. Adrian, R. J., Dynamic Range of Velocity and Spatial Resolution of Particle Image Velocimetry, Meas. Sci. Technol. Vol. 8. pp. 1393-1398. 1997.

    39. Launder B. E. and Spalding A. D., Mathematical Models of Turbulence, Academic, London, pp. 90-100, 1972.

    40. Liakopoulos A., Explicit Representation of the Complete Velocity Profile in a Turbulent Boundary Layer, AIAA Journal, Vol. 22, pp. 844-846, 1984.

    41. Jayetilleke, F., Kadinski, L., and Scha¨fer, M., A Multigrid Solver for Fluid Flow and Mass Transfer Coupled with Grey-Body Surface Radiation for the Numerical Simulation of Chemical Vapor Deposition Processes, J. Cryst. Growth, 146, pp. 202-208, 1995.

    42. Patankar, S. V., Numerical Heat Transfer and Fluid Flow, Hemisphere Publishing Corporation, New York, 1980.

    43. Van Doormaal J. P. and Raithby F. D., Enhancements of the SIMPLE method for tredicting incompressible fluid flows, Numerical Heat Transfer, Vol. 7, pp. 147-163, 1984.

    44. CFD-ACE(U), CFD Research Corporation, Alabama, USA, 2002.

    下載圖示 校內:2006-07-27公開
    校外:2006-07-27公開
    QR CODE