| 研究生: |
廖志峰 Liao, Zhi-Feng |
|---|---|
| 論文名稱: |
介電泳力微流晶片用於分離血漿及血球之研究發展 Separating Plasma and Blood Cells by Dielectrophoresis in Micro-Fluidic Chip |
| 指導教授: |
呂宗行
Leu, Tzong-Shyng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 123 |
| 中文關鍵詞: | 介電泳力 、血液分離 |
| 外文關鍵詞: | Dielectrophoresis, blood separation |
| 相關次數: | 點閱:64 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
現今,市場上之血液分離儀器與檢測儀器的體積約莫於一張病床之寬度,若欲使用血液分離儀將血液分離後再進行檢測時,這些設備除了非常佔用空間之外,並且需要大量的血液樣本及時間成本才使得完成;因此,藉由「lab-on-a-chip」之概念套用於血液分離的技術中,不僅使得佔用空間達到縮減效果,而且同時降低血液樣本與時間成本,其為本研究之主要動機。然而針對此研究,主要利用「微機電製程技術」製作微流管道,其操控機制為「介電泳(dielectrophoresis,DEP)原理」,藉此原理將血球移至管道中央的位置,使靠近管壁位置處之血球含量將會減少甚至不含血球(空乏區)。然而,一方面於空乏區的位置處設立血漿出口管道並抽取血漿以達成血液之分離目的;另一方面則研究管道之入口流量對於血漿抽取效率的影響程度。此外,於實驗中將血球加入戊二醛將血球脆化,測試脆化後的血球於電場中的反應,於10 MHz~15 MHz頻率下發現:(1)脆性血球對於介電泳力無任何反應 (2)正常血球則皆為正的介電泳力,此實驗發現有利於往後的檢測血球的健康參考依據。
This study develops a low cost and sample consumption dielectrophresis (DEP) micro-fluidic chip for blood sample separation. MEMS techniques are applied in chip fabrication. Blood cells are found to be propelled to the central position of channel via DEP force. There are no blood cells near the side walls. Plasma outlet designed on the side wall of channel is used to extract plasma for separation. Extraction efficiency decreases with increasing Qin for Type 1 design. The experimental results indicate 90% plasma extraction efficiency for Type 2 design is achieved, but Type 2 design can only operate at a low inlet flow rate (Qin= 0.5 μl/min).
It is also found the injected glutaraldehyde for fragile RBC in the electric field at frequency 10 MHz~15 MHz doesn’t have any reactions, but normal RBC will be accumulated by positive DEP force.
[1] F. Ch. Mokken, M. Kedaria, Ch. P. Henny, M. R. Hardeman, and A. W. Gelb, “The clinical importance of erythrocyte deformability,a hemorrheological parameter”, Ann Hematol, 64, 113-122, 1991
[2] X. Chen, D. F. Cui, C. C. Liu, H. Li, “Microfluidic chip for blood cell separation and collection based on crossflow filtration”, Sensors and Actuators B 130, 216–221, 2008
[3] S. Yang, A. Ündar, J. D. Zahn, “A microfluidic device for continuous, real time blood plasma separation” , Lab On A Chip, Vol.6, 871–880, 2006
[4] C. Blattert, R. Jurischka, I. Tahhan, A. Schoth, P. Kerth, W. Menz, “Separation of blood in microchannel bends” , Proceedings of the 26th Annual International Conference of the IEEE EMBS, CA, USA, 2004
[5] H. A. Pohl, “The motion and precipition of suspensoids in divergent electric fields”, Journal of Applied Physics, Vol. 22, 869–871, 1951
[6] P. Gascoyne, C. Mahidol, M. Ruchirawat, J. Satayavivad, P. Watcharasitb, F. F. Beckera, “Microsample preparation by dielectrophoresis: isolation of malaria”, Lab On A Chip, Vol.2, 70–75, 2002
[7] X. B. Wang, Y. Huang, J. P. H. Burt, G. H. Mark, R. Pethig, “Selective dielectrophoretic confinement of bioparticles in potential energy wells”, Journal of Pysics D: Applied Physics, Vol. 26, 1278-1285, 1993
[8] X. B. Wang, J. Yang, Y. Huang, J. Vykoukal, F. F. Becker, and P. R. C. Gascoyne, “Cell Separation by Dielectrophoretic
Field-flow-fractionation”, Analytical Chemistry, 72, 832-839, 2000
[9] H. A. Pohl, “Some effects of nonuniform fields on dielectrics”, Journal of Applied Physics, Vol. 29, 1182–1188, 1958
[10] H. A. Pohl, J. S. Crane, “Dielectrophoresis of cells”, Biophysical Journal
, Vol. 11, 711-727, 1971
[11] G. H. Mark, R. Pethig, “Dielectrophoretic separation of cells:
continuous separation”, Biotechnology and Bioengineering, Vol. 45, 337-343, 1995
[12] R. Pethig, G. H. Markx, “Applications of dielectrophoresis in
biotechnology”, Trends in Biotechnology, Vol. 15, 426-432, 1997
[13] J. C. Giddings, “Field-flow fractionation of macromolecules”, Journal of Chromatography A, Vol.470, 327–335, 1989
[14] T. Mtiller, S. Fiedler, T. Schnelle, K. Ludwig, H. Junga, G. Fuhr, “High frequency electric fields for trapping of viruses”, Biotechnology Techniques, Vol. 10, No.4, 221-226, 1996
[15] 羅英傑, “Dielectrophoresis on Plasma/RBC Separation and RBC Manipulation” , 碩士論文, 台灣大學應用力學所, 2003
[16] Jung-Mu Kim, D. H. Oh “Permittivity measurements up to
30GHz using micromachined probe”, Journal of Micromechanics and Microengineering, Vol. 15, 543-550, 2004
[17] J. Oh, R. Hart, J. Capurro and H. Noh, “Comprehensive analysis of
particle motion under non-uniform AC electric fields in a microchannel”, Lab On A Chip, 9, 62-78, 2009
[18] 翁志遠, “介電泳場流分離法之數值模擬與實驗研究”, 碩士論文, 成 功大學航太所, 2007
[19] http://highscope.ch.ntu.edu.tw/wordpress/?p=4478
[20] NANOTM SU-8 Negative Tone Photoresist Formulations 50-100,
MICRO CHEM
[21] 黃志宇, “粒子操作術於分離脆性紅血球之應用” , 碩士論文, 台灣大學應用力學所, 2006
[22] 吳俊賢, “利用交流電滲透驅動流體與微粒子”, 碩士論文, 成功大學航太所, 2010