簡易檢索 / 詳目顯示

研究生: 楊淙顯
Yang, Chung-Xian
論文名稱: 在不同溫度下氧化鋅微米柱內激子極化子之色散關係與雷射行為
Dispersion relation and lasing behavior of exciton-polaritons in ZnO microrods at different temperatures
指導教授: 徐旭政
Hsu, Hsu-Cheng
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Photonics
論文出版年: 2022
畢業學年度: 110
語文別: 英文
論文頁數: 91
中文關鍵詞: 氧化鋅微米柱激子極化子色散關係折射率拉比分裂能量激子極化子雷射光學增益LO聲子
外文關鍵詞: ZnO microrods, exciton-polariton dispersion relation, refractive index, Rabi splitting energy, exciton-polariton laser, optical gain, LO phonon replica
相關次數: 點閱:83下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 氧化鋅為具有強極性特性的II-VI寬能隙半導體(~3.37 eV),並且擁有較大的激子束縛能(~60 meV),能使激子穩定存在於室溫中。氧化鋅的自然結構具有六角形橫截面能形成耳語迴廊共振腔,使光子能被完美的侷限於共振腔中。基於以上兩點優勢,激子與光子會在共振腔中產生強耦合形成激子極化子,其具有半光半物質的特性。
    在本論文將單根氧化鋅微米柱作為研究對象,重點研究氧化鋅微米柱在不同溫度下的光譜特性、色散關係、激子極化子雷射、光學增益、縱向聲子(LO聲子)等物理現象。具有內容包括以下二部份:
    第一步部分為激子極化子在不同溫度下的色散關係,為了獲得激子極化子的色散關係必須先取得材料的折射率,首先我們使用微光致發光光譜觀察了不同溫度下耳語迴廊共振腔的光學特性,並計算出近能帶的折射率對於溫度的依賴性。將不同溫度的折射率代入羅倫茲色散模型後,可由色散曲線中提取出與激子極化子有關之物理參數(如拉比分裂能量及前置因子),最後經過分析可得到溫度與拉比分裂能量之間的關係,並透過理論公式得到解釋。
    第二部分為氧化鋅微米柱中的LO聲子有助於激子極化激子雷射產生,我們首先在室溫中實現激子極化子雷射並研究其光學特性,當激發密度大於雷射閥值時,我們可以觀察到光強度呈現非線性的增加及半高全寬急遽下降的雷射特性;隨著激發密度持續上升,雷射波峰呈現藍移的趨勢,並透過觀察光學影像證明激子極化子雷射在空間上具有相干性。接著,我們更進一步探討LO聲子如何輔助激子極化子雷射,由於氧化鋅本身為具有極性的半導體材料,LO聲子能量(~72 meV)與激子束縛能之間的能量接近有助於激子與聲子之間的耦合並由穩態光譜中觀察到多個聲子複製品。因此我們觀察不同溫度下LO聲子的演變及雷射行為清楚表明,氧化鋅微米柱系統中LO聲子在光學增益機制中扮演重要角色,其中光學增益分布隨溫度變化受到自由激子的重吸收影響,再吸收是系統內重要的損耗通道。

    Zinc oxide (ZnO) is a II-VI wide bandgap semiconductor with strong polar properties and larger exciton binding energy (~60 meV), which enables excitons to exist at room temperature. The natural structure of ZnO has a hexagonal cross-section that can form the whispering-gallery-mode (WGM) microcavities for perfect photons confinement. Thanks to these two benefits, excitons and photons will generate strong microcavity coupling to form exciton-polaritons with the characteristics of half-light and half-matter. This thesis used a single ZnO microrod (ZnO MR) as the research object, the spectrum characteristics, exciton-polariton dispersion relation, exciton-polariton lasing, optical gain, LO phonon, and other physical phenomena of ZnO MR at different temperatures. The content includes the following two parts:
    In the first part of the work, we research the dispersion relation of exciton-polaritons at different temperatures. We should first extract the material's refractive index to obtain the exciton-polariton dispersion relation (E-k relation). First, we observed the optical characteristics of the whispering-gallery-modes (WGMs) at different temperatures by micro-photoluminescence (μ-PL) spectroscopy and calculated the near-bandgap refractive index with temperature. After substituting the refractive index at different temperatures into the Lorentz dispersion model, we can extract the physical parameters (such as Rabi splitting energy and pre-factor, etc.) related to the exciton-polariton from the dispersion curve. Finally, the Rabi splitting energy as a function of temperature can be explained from the theoretical equation.
    In the second part of the work, we research the LO phonon-assisted exciton-polariton lasing in ZnO MRs. First, we have realized the exciton-polariton laser at room temperature and observed optical characteristics. When the excitation density is above the lasing threshold, we observed the lasing characteristics that the PL intensity shows the non-linear increase and the drastic drop in FWHM. As the excitation density continues to increase, the lasing peak shows the blueshift trend, and the coherence of the exciton-polariton laser is proved by measuring the real space. Next, we further discuss how LO phonon-assisted the exciton-polariton lasing. Since ZnO is a strong polar semiconductor material, the similarities between the LO phonon energy (~72 meV) and exciton binding energy also enhance the exciton-phonon coupling so that the multi phonon replica can be observed from the steady-state spectra. Therefore, we observe the LO phonon and lasing behavior at different temperatures demonstrating that the LO phonon plays a crucial role in the optical gain mechanism. Notably, the reabsorption, which is a significant loss channel, affects the optical gain distribution with temperature.

    摘要 I Abstract III 致謝 V List of Tables VI List of Figures VI Contents XI Chapter 1. Introduction 1 1.1 Preface 1 1.2 Historical Review 3 1.3 Motivation 10 Chapter 2. Physical basics of ZnO 11 2.1 Material properties 11 2.1.1 Structure properties 11 2.1.2 Refractive index 14 2.1.3 Photoluminescence spectrum 15 2.1.4 Excitons 17 2.2 Microcavity 23 2.2.1 Whispering Gallery Mode 25 2.2.2 ZnO microrods Microcavities 26 2.3 Light-matter interaction 31 2.4 Exciton-polariton 34 2.4.1 Dispersion curve of exciton-polariton in ZnO microrods 38 2.4.2 Bose-Einstein condensation of exciton-polariton 40 Chapter 3. Experimental process and measurement 43 3.1 Fabrication of ZnO microrods 43 3.1.1 Chemical Vapor Deposition 43 3.2 Analysis of Material Morphologies 47 3.2.1 Scanning electron microscopy (SEM) 47 3.3 Measurement of Optical Properties 48 3.3.1 Photoluminescence (PL) system 48 3.3.2 Temperature-Controlling system 49 3.3.3 Angle-resolved photoluminescence (ARPL) 50 Chapter 4. Experimental result and discussion 52 4.1 Morphology and optical property of the material 52 4.1.1 Morphology of ZnO microrods 52 4.1.2 Optical properties of ZnO microrods 53 4.2 Temperature-dependent of the dispersion relations 55 4.2.1 Temperature-dependent of PL spectra 55 4.2.2 Temperature-dependent of refractive index 59 4.2.3 Temperature-dependent of Rabi splitting 65 4.3 Optical gain mechanism of exciton-polariton lasing 71 4.3.1 Characteristics of exciton-polariton lasing 71 4.3.2 Optical gain of ZnO MRs 75 Chapter 5. Conclusion and Future Work 82 5.1 Conclusion 82 5.2 Future work 84 References 85

    [1] J. Hopfield, "Theory of the contribution of excitons to the complex dielectric constant of crystals," Physical Review, vol. 112, no. 5, p. 1555, 1958.
    [2] M. H. Anderson, J. R. Ensher, M. R. Matthews, C. E. Wieman, and E. A. Cornell, "Observation of Bose-Einstein condensation in a dilute atomic vapor," science, vol. 269, no. 5221, pp. 198-201, 1995.
    [3] A. Amo et al., "Superfluidity of polaritons in semiconductor microcavities," Nature Physics, vol. 5, no. 11, pp. 805-810, 2009.
    [4] A. Baas, J.-P. Karr, M. Romanelli, A. Bramati, and E. Giacobino, "Optical bistability in semiconductor microcavities in the nondegenerate parametric oscillation regime: Analogy with the optical parametric oscillator," Physical Review B, vol. 70, no. 16, p. 161307, 2004.
    [5] A. Amo et al., "Exciton–polariton spin switches," Nature Photonics, vol. 4, no. 6, pp. 361-366, 2010.
    [6] D. Ballarini et al., "All-optical polariton transistor Nat," ed: Commun, 2013.
    [7] A. Imamog, R. Ram, S. Pau, and Y. Yamamoto, "Nonequilibrium condensates and lasers without inversion: Exciton-polariton lasers," Physical Review A, vol. 53, no. 6, p. 4250, 1996.
    [8] A. Einstein, "Quantentheorie des idealen gases, preussische akademie des wissenschaften," Phys.-math. Klasse, Sitzungberichte, vol. 18, p. 32, 1925.
    [9] K. B. Davis et al., "Bose-Einstein condensation in a gas of sodium atoms," Physical review letters, vol. 75, no. 22, p. 3969, 1995.
    [10] C. J. Pethick and H. Smith, Bose–Einstein condensation in dilute gases. Cambridge university press, 2008.
    [11] C. Weisbuch, M. Nishioka, A. Ishikawa, and Y. Arakawa, "Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity," Physical Review Letters, vol. 69, no. 23, p. 3314, 1992.
    [12] R. Houdré, C. Weisbuch, R. Stanley, U. Oesterle, P. Pellandini, and M. Ilegems, "Measurement of cavity-polariton dispersion curve from angle-resolved photoluminescence experiments," Physical Review Letters, vol. 73, no. 15, p. 2043, 1994.
    [13] D. Bajoni et al., "Polariton laser using single micropillar GaAs− GaAlAs semiconductor cavities," Physical review letters, vol. 100, no. 4, p. 047401, 2008.
    [14] H. Deng, G. Weihs, D. Snoke, J. Bloch, and Y. Yamamoto, "Polariton lasing vs. photon lasing in a semiconductor microcavity," Proceedings of the National Academy of Sciences, vol. 100, no. 26, pp. 15318-15323, 2003.
    [15] D. Snoke, "Spontaneous Bose coherence of excitons and polaritons," Science, vol. 298, no. 5597, pp. 1368-1372, 2002.
    [16] R. Stevenson et al., "Continuous wave observation of massive polariton redistribution by stimulated scattering in semiconductor microcavities," Physical Review Letters, vol. 85, no. 17, p. 3680, 2000.
    [17] P. Savvidis, J. Baumberg, R. Stevenson, M. Skolnick, D. Whittaker, and J. Roberts, "Angle-resonant stimulated polariton amplifier," Physical review letters, vol. 84, no. 7, p. 1547, 2000.
    [18] J. Baumberg et al., "Parametric oscillation in a vertical microcavity: A polariton condensate or micro-optical parametric oscillation," Physical Review B, vol. 62, no. 24, p. R16247, 2000.
    [19] J. Kasprzak et al., "Bose–Einstein condensation of exciton polaritons," Nature, vol. 443, no. 7110, pp. 409-414, 2006.
    [20] K. G. Lagoudakis et al., "Quantized vortices in an exciton–polariton condensate," Nature physics, vol. 4, no. 9, pp. 706-710, 2008.
    [21] A. Amo et al., "Collective fluid dynamics of a polariton condensate in a semiconductor microcavity," Nature, vol. 457, no. 7227, pp. 291-295, 2009.
    [22] G. Malpuech, A. Di Carlo, A. Kavokin, J. J. Baumberg, M. Zamfirescu, and P. Lugli, "Room-temperature polariton lasers based on GaN microcavities," Applied physics letters, vol. 81, no. 3, pp. 412-414, 2002.
    [23] M. Zamfirescu, A. Kavokin, B. Gil, G. Malpuech, and M. Kaliteevski, "ZnO as a material mostly adapted for the realization of room-temperature polariton lasers," Physical Review B, vol. 65, no. 16, p. 161205, 2002.
    [24] R. Johne, D. Solnyshkov, and G. Malpuech, "Theory of exciton-polariton lasing at room temperature in ZnO microcavities," Applied Physics Letters, vol. 93, no. 21, p. 211105, 2008.
    [25] J.-R. Chen et al., "Characteristics of exciton-polaritons in ZnO-based hybrid microcavities," Optics express, vol. 19, no. 5, pp. 4101-4112, 2011.
    [26] H. Franke, C. Sturm, R. Schmidt-Grund, G. Wagner, and M. Grundmann, "Ballistic propagation of exciton–polariton condensates in a ZnO-based microcavity," New Journal of Physics, vol. 14, no. 1, p. 013037, 2012.
    [27] T. Guillet et al., "Non‐linear emission properties of ZnO microcavities," physica status solidi c, vol. 9, no. 5, pp. 1225-1229, 2012.
    [28] Y.-Y. Lai, Y.-P. Lan, and T.-C. Lu, "High-temperature polariton lasing in a strongly coupled ZnO microcavity," Applied Physics Express, vol. 5, no. 8, p. 082801, 2012.
    [29] T.-C. Lu et al., "Room temperature polariton lasing vs. photon lasing in a ZnO-based hybrid microcavity," Optics express, vol. 20, no. 5, pp. 5530-5537, 2012.
    [30] L. Orosz et al., "LO-phonon-assisted polariton lasing in a ZnO-based microcavity," Physical Review B, vol. 85, no. 12, p. 121201, 2012.
    [31] F. Li et al., "Fabrication and characterization of a room-temperature ZnO polariton laser," Applied Physics Letters, vol. 102, no. 19, p. 191118, 2013.
    [32] F. Li et al., "From excitonic to photonic polariton condensate in a ZnO-based microcavity," Physical review letters, vol. 110, no. 19, p. 196406, 2013.
    [33] Y.-Y. Lai, Y.-H. Chou, Y.-P. Lan, T.-C. Lu, S.-C. Wang, and Y. Yamamoto, "Crossover from polariton lasing to exciton lasing in a strongly coupled ZnO microcavity," Scientific reports, vol. 6, no. 1, pp. 1-7, 2016.
    [34] Z. Chen et al., "Robust Polariton Bose–Einstein Condensation Laser via a Strong Coupling Microcavity," Laser & Photonics Reviews, vol. 14, no. 12, p. 2000273, 2020.
    [35] R. Schmidt‐Grund, T. Michalsky, M. Wille, and M. Grundmann, "Coherent Polariton Modes and Lasing in ZnO Nano‐and Microwires," physica status solidi (b), vol. 256, no. 4, p. 1800462, 2019.
    [36] L. Liao, Y. Ling, S. Luo, Z. Zhang, J. Wang, and Z. Chen, "Propagation of a polariton condensate in a one-dimensional microwire at room temperature," Applied Physics Express, vol. 12, no. 5, p. 052009, 2019.
    [37] J.-W. Kang, B. Song, W. Liu, S.-J. Park, R. Agarwal, and C.-H. Cho, "Room temperature polariton lasing in quantum heterostructure nanocavities," Science advances, vol. 5, no. 4, p. eaau9338, 2019.
    [38] D. Xu et al., "Polariton lasing in a ZnO microwire above 450 K," Applied Physics Letters, vol. 104, no. 8, p. 082101, 2014.
    [39] A. Trichet, E. Durupt, F. Médard, S. Datta, A. Minguzzi, and M. Richard, "Long-range correlations in a 97% excitonic one-dimensional polariton condensate," Physical Review B, vol. 88, no. 12, p. 121407, 2013.
    [40] W. Xie et al., "Room-temperature polariton parametric scattering driven by a one-dimensional polariton condensate," Physical review letters, vol. 108, no. 16, p. 166401, 2012.
    [41] A. Trichet et al., "One-dimensional ZnO exciton polaritons with negligible thermal broadening at room temperature," Physical Review B, vol. 83, no. 4, p. 041302, 2011.
    [42] Z. Zhang et al., "Exciton-polariton light-emitting diode based on a ZnO microwire," Optics Express, vol. 25, no. 15, pp. 17375-17381, 2017.
    [43] S. Luo, Y. Wang, L. Liao, Z. Zhang, X. Shen, and Z. Chen, "Exciton-polariton dynamics modulated by exciton-photon detuning in a ZnO microwire," Journal of Applied Physics, vol. 127, no. 2, p. 025702, 2020.
    [44] S.-C. Wu, G.-Y. Zhuang, Y.-C. Chang, and H.-C. Hsu, "Determination of Dispersion Relation and Optical Parameters Induced by Exciton–Polariton Effect in Whispering-Gallery Microcavities Using Photoluminescence Spectroscopy," ACS Photonics, vol. 8, no. 5, pp. 1413-1420, 2021.
    [45] M. Niskanen et al., "Porphyrin adsorbed on the (101 [combining macron] 0) surface of the wurtzite structure of ZnO–conformation induced effects on the electron transfer characteristics," Physical Chemistry Chemical Physics, vol. 15, no. 40, pp. 17408-17418, 2013.
    [46] F. Xue et al., "Influence of external electric field on piezotronic effect in ZnO nanowires," Nano Research, vol. 8, no. 7, pp. 2390-2399, 2015.
    [47] R. Schmidt-Grund, P. Kühne, C. Czekalla, D. Schumacher, C. Sturm, and M. Grundmann, "Determination of the refractive index of single crystal bulk samples and micro-structures," Thin Solid Films, vol. 519, no. 9, pp. 2777-2781, 2011.
    [48] B. Lin, Z. Fu, and Y. Jia, "Green luminescent center in undoped zinc oxide films deposited on silicon substrates," Applied physics letters, vol. 79, no. 7, pp. 943-945, 2001.
    [49] H.-C. Hsu and W.-F. Hsieh, "Excitonic polaron and phonon assisted photoluminescence of ZnO nanowires," Solid state communications, vol. 131, no. 6, pp. 371-375, 2004.
    [50] J. Frenkel, "On the transformation of light into heat in solids. I," Physical Review, vol. 37, no. 1, p. 17, 1931.
    [51] N. Bohr, "XXXVII. On the constitution of atoms and molecules," The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, vol. 26, no. 153, pp. 476-502, 1913.
    [52] R. Laskowski and N. E. Christensen, "Ab initio calculation of excitons in ZnO," Physical Review B, vol. 73, no. 4, p. 045201, 2006.
    [53] S. Chichibu et al., "Exciton–polariton spectra and limiting factors for the room-temperature photoluminescence efficiency in ZnO," Semiconductor science and technology, vol. 20, no. 4, p. S67, 2005.
    [54] L. Sun et al., "Direct observation of whispering gallery mode polaritons and their dispersion in a ZnO tapered microcavity," Physical review letters, vol. 100, no. 15, p. 156403, 2008.
    [55] K. J. Vahala, "Optical microcavities," nature, vol. 424, no. 6950, pp. 839-846, 2003.
    [56] L. Rayleigh, "CXII. The problem of the whispering gallery," The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, vol. 20, no. 120, pp. 1001-1004, 1910.
    [57] M. Marhic, L. Kwan, and M. Epstein, "Whispering-gallery CO 2 laser," IEEE Journal of Quantum Electronics, vol. 15, no. 6, pp. 487-490, 1979.
    [58] J. Liu, S. Lee, Y. Ahn, J.-Y. Park, K. H. Koh, and K. H. Park, "Identification of dispersion-dependent hexagonal cavity modes of an individual ZnO nanonail," Applied physics letters, vol. 92, no. 26, p. 263102, 2008.
    [59] J. Wiersig, "Hexagonal dielectric resonators and microcrystal lasers," Physical Review A, vol. 67, no. 2, p. 023807, 2003.
    [60] J. Dai, C. Xu, K. Zheng, C. Lv, and Y. Cui, "Whispering gallery-mode lasing in ZnO microrods at room temperature," Applied physics letters, vol. 95, no. 24, p. 241110, 2009.
    [61] J.-M. Gérard, B. Sermage, B. Gayral, B. Legrand, E. Costard, and V. Thierry-Mieg, "Enhanced spontaneous emission by quantum boxes in a monolithic optical microcavity," Physical review letters, vol. 81, no. 5, p. 1110, 1998.
    [62] R. G. Baets, D. G. Delbeke, R. Bockstaele, and P. Bienstman, "Resonant-cavity light-emitting diodes: a review," Light-Emitting Diodes: Research, Manufacturing, and Applications VII, vol. 4996, pp. 74-86, 2003.
    [63] Z. Chen et al., "Dispersion mapping of a whispering gallery mode robust polariton at room temperature," OSA Continuum, vol. 3, no. 8, pp. 2053-2061, 2020.
    [64] J. Lagois, "Depth-dependent eigenenergies and damping of excitonic polaritons near a semiconductor surface," Physical Review B, vol. 23, no. 10, p. 5511, 1981.
    [65] J. Kasprzak, "Condensation of exciton polaritons," Université Joseph-Fourier-Grenoble I, 2006.
    [66] H. Deng, Dynamic condensation of semiconductor microcavity polaritons. stanford university, 2006.
    [67] T. Byrnes, N. Y. Kim, and Y. Yamamoto, "Exciton–polariton condensates," Nature Physics, vol. 10, no. 11, pp. 803-813, 2014.
    [68] S. Chichibu, T. Sota, G. Cantwell, D. Eason, and C. Litton, "Polarized photoreflectance spectra of excitonic polaritons in a ZnO single crystal," Journal of Applied Physics, vol. 93, no. 1, pp. 756-758, 2003.
    [69] D. Reynolds et al., "Neutral-donor–bound-exciton complexes in ZnO crystals," Physical Review B, vol. 57, no. 19, p. 12151, 1998.
    [70] Y. P. Varshni, "Temperature dependence of the energy gap in semiconductors," physica, vol. 34, no. 1, pp. 149-154, 1967.
    [71] D. Hamby, D. Lucca, M. Klopfstein, and G. Cantwell, "Temperature dependent exciton photoluminescence of bulk ZnO," Journal of applied physics, vol. 93, no. 6, pp. 3214-3217, 2003.
    [72] C. Czekalla et al., "Whispering gallery modes in zinc oxide micro‐and nanowires," physica status solidi (b), vol. 247, no. 6, pp. 1282-1293, 2010.
    [73] T. Nobis, E. M. Kaidashev, A. Rahm, M. Lorenz, and M. Grundmann, "Whispering gallery modes in nanosized dielectric resonators with hexagonal cross section," Physical review letters, vol. 93, no. 10, p. 103903, 2004.
    [74] E. Mallet et al., "Accurate determination of homogeneous and inhomogeneous excitonic broadening in ZnO by linear and nonlinear spectroscopies," Physical Review B, vol. 87, no. 16, p. 161202, 2013.
    [75] R. Su et al., "Room temperature long-range coherent exciton polariton condensate flow in lead halide perovskites," Science advances, vol. 4, no. 10, p. eaau0244, 2018.
    [76] A. Markus, J. Chen, C. Paranthoen, A. Fiore, C. Platz, and O. Gauthier-Lafaye, "Simultaneous two-state lasing in quantum-dot lasers," Applied Physics Letters, vol. 82, no. 12, pp. 1818-1820, 2003.
    [77] D. Bagnall, Y. Chen, Z. Zhu, T. Yao, M. Shen, and T. Goto, "High temperature excitonic stimulated emission from ZnO epitaxial layers," Applied physics letters, vol. 73, no. 8, pp. 1038-1040, 1998.
    [78] C. Czekalla, J. Lenzner, A. Rahm, T. Nobis, and M. Grundmann, "A zinc oxide microwire laser," Superlattices and Microstructures, vol. 41, no. 5-6, pp. 347-351, 2007.
    [79] C. Czekalla, C. Sturm, R. Schmidt-Grund, B. Cao, M. Lorenz, and M. Grundmann, "Whispering gallery mode lasing in zinc oxide microwires," Applied physics letters, vol. 92, no. 24, p. 241102, 2008.
    [80] B. Kim, H. Kim, S. Park, K. Kyhm, and C. Cho, "Polarization asymmetry and optical modal gain saturation via carrier–photon interaction in ZnO," Applied Physics Letters, vol. 97, no. 4, p. 041115, 2010.
    [81] C. Klingshirn, "ZnO: From basics towards applications," physica status solidi (b), vol. 244, no. 9, pp. 3027-3073, 2007.
    [82] S. O. Kasap, Optoelectronics and photonics. Pearson Education UK, 2013.
    [83] S.-C. Wu, Y.-P. Tseng, and H.-C. Hsu, "Exciton Contributed Optical Model Gain Spectra of Single ZnO Microrod by Variable Stripe Length Method," in 2019 24th Microoptics Conference (MOC), 2019: IEEE, pp. 328-329.
    [84] M. Wouters, I. Carusotto, and C. Ciuti, "Spatial and spectral shape of inhomogeneous nonequilibrium exciton-polariton condensates," Physical Review B, vol. 77, no. 11, p. 115340, 2008.
    [85] J. Tang et al., "Room temperature exciton–polariton Bose–Einstein condensation in organic single-crystal microribbon cavities," Nature Communications, vol. 12, no. 1, pp. 1-8, 2021.
    [86] E. Wertz et al., "Spontaneous formation and optical manipulation of extended polariton condensates," Nature physics, vol. 6, no. 11, pp. 860-864, 2010.

    無法下載圖示 校內:2027-08-22公開
    校外:2027-08-22公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE