| 研究生: |
楊子緯 Yang, Tzu-Wei |
|---|---|
| 論文名稱: |
通用人形機器人動作編輯及介面開發之研究 A Research on the Motion Editing System for General Humanoid Robots |
| 指導教授: |
蔡明俊
Tsai, Ming-June |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 英文 |
| 論文頁數: | 111 |
| 中文關鍵詞: | 人形機器人 、動作編輯 、動作濾除 、動作產生 、動作擬合 、動作編碼 、動作解碼 、逆向運動學 、使用介面 、開發工具 |
| 外文關鍵詞: | Humanoid Robot, Motion Editing, Motion Filtering, Motion Creation, Motion Interpolation, Motion Encoding, Motion Decoding, Inverse Kinematics, Man-machine Interface, Developing tool |
| 相關次數: | 點閱:94 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文主要係探討人形機器人的動作編輯及動作的產生。人形機器人的研究在國外已行之有年。與一般工業用機器人的動作不一樣的地方是在人體的動作經常包含的加速度的變化或使勁狀態的不同。為了探討重新產生這方面動作特性並套用至人形機器人身上。首先,本論文發表了一組人形機器人設計和製造,及其電路控制。此機器人共計有31個主動式關節自由度,51公分高,2公斤重。本論文也展示了一套通用的開發介面可適用於任何的多軸機器人做動作產生之研究。在動作編輯方面,藉由順、逆向運動學及動作編碼的協助,我們得以對動作進行分析,插入及編輯。提供了人形機器人開發人員除了一步步教導機器人外的另一種可行且高效率的動作產生方式。此外,本論文也提到針對擷取到的人體動作進行修整的方法。由於人體動作擷取常受限於標誌點遮蔽而遺失其動作資訊,我們提出一整套的方法,藉由分析擷取的動作資訊,濾除異常的動作資訊,並重新產生平滑的動作。
The development of humanoid robot’s motion pattern has started for several years. Unlike commercial conventional robotic motions, human motions usually perform with changed acceleration or sudden deceleration. This thesis mainly explores the motion pattern generating of humanoid robots. First, the hardware design of a 31 degrees of freedoms humanoid robot is described. The robot is built in smaller scale, which is 51 centimeter tall and 2 kg weight. The developing tool for general humanoid robots has been presented in this thesis. The interface is mainly design for motion pattern researching. Then, the motion editing functions, such as, motion teaching, motion interpolating, and motion code editing, is proposed. Through the kinematic model and motion code, the motions can be analyzed, interpolated, and edited. Besides, the method for modifying captured human motion is described in this thesis, which contains filtering abnormal postures and regenerating smooth motions.
1. Microsoft Robotics, http://www.microsoft.com/robotics/#Learn.
2. Ahn, C. K., Lee, M. C. and Go, S. J. Development of a biped robot with toes to improve gait pattern, in IEEE/ASME International Conference on Advanced Intelligent Mechatronics. 2003, vol. 2, pp. 729-734.
3. Cao, M. and Kawamura, A. A design method of neural oscillatory networks for generation of humanoid biped walking patterns, in IEEE International Conference on Robotics and Automation. 1998, vol. 3, pp. 2357-2362.
4. Cao, M. and Kawamura, A. An evolutionary design scheme of neural oscillatory network for generation of biped walking patterns, in 5th International Workshop on Advanced Motion Control. 1998, vol., pp. 666-671.
5. Dasgupta, A. and Nakamura, Y. Making feasible walking motion of humanoid robots from human motion capture data, in IEEE International Conference on Robotics and Automation. 1999, vol. 2, pp. 1044-1049.
6. Hachimura, K. and Nakamura, M. Method of generating coded description of human body motion from motion-captured data, in 10th IEEE International Workshop on Robot and Human Interactive Communication. 2001, vol., pp. 122-127.
7. Hirose, R. and Takenaka, T., Development of the humanoid robot ASIMO, Honda R&D Technical Review, vol. 13, pp. 1-6
8. Hirukawa, H., Kajita, S., Kanehiro, F., Kaneko, K. and Isozumi, T., The human-size humanoid robot that can walk, lie down and get up, The International Journal of Robotics Research, vol. 24, pp. 755-769
9. Hoonsuwan, P., Sillapaphiromsuk, S., Sukvichai, K. and Fish, A. Designing a stable humanoid robot trajectory using a real human motion, in 6th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology. 2009, vol. 1, pp. 336-339.
10. Huang, Q., et al., Planning walking patterns for a biped robot, IEEE Transactions on Robotics and Automation, vol. 17, pp. 280-289
11. Inaba, M., Igarashi, T., Kagami, S. and Inoue, H. A 35 DOF humanoid that can coordinate arms and legs in standing up, reaching and grasping an object, in IEEE/RSJ International Conference on Intelligent Robots and Systems. vol. 1, pp. 29-36.
12. Jackson, J., Microsoft Robotics Studio: A Technical Introduction, Robotics & Automation Magazine, IEEE vol. 14, pp. 82-87 Dec. 2007.
13. Jalics, L., Hemami, H. and Zheng, Y. F. Pattern generation using coupled oscillators for robotic and biorobotic adaptive periodic movement, in IEEE International Conference on Robotics and Automation. 1997, vol. 1, pp. 179-184.
14. Kajita, S., et al. Biped walking pattern generation by using preview control of zero-moment point, in IEEE International Conference on Robotics and Automation. 2003, vol. 2, pp. 1620-1626.
15. JSK Lab., http://www.jsk.t.u-tokyo.ac.jp/research.html.
16. MIT leg Lab., http://www.ai.mit.edu/projects/leglab/.
17. Takanishi Lab., http://www.takanishi.mech.waseda.ac.jp/.
18. Nishiwaki, K., Kagami, S., Kuniyoshi, Y., Inaba, M. and Inoue, H. Toe joints that enhance bipedal and fullbody motion of humanoid robots, in ICRA '02. IEEE International Conference on Robotics and Automation. 2002, vol. 3, pp. 3105-3110.
19. Nishiwaki, K., Kagami, S., Kuniyoshi, Y., Inaba, M. and Inoue, H. Online generation of humanoid walking motion based on a fast generation method of motion pattern that follows desired zmp, in IEEE/RSJ International Conference on Intelligent Robots and Systems. 2002, vol. 3, pp. 2684-2689.
20. Okada, M., Shinohara, T., Gotoh, T., Ban, S. and Nakamura, Y. Humanoid robot mechanisms for responsive mobility, in 2nd International Symposiumon Adaptive Motion of Animals and Machines. 2003, vol.
21. Pollard, N. S. and Hodgins, J. K. Optimizing Human Motion for the Control of a Humanoid Robot, in Applied Mathematics and Applications of Mathematics. 2002, vol.
22. Pollard, N. S., Hodgins, J. K., Riley, M. J. and Atkeson, C. G. Adapting human motion for the control of a humanoid robot, in ICRA '02. IEEE International Conference on Robotics and Automation. 2002, vol. 2, pp. 1390-1397.
23. Riley, M., Ude, A. and Atkeson, C. G. Methods for motion generation and interaction with a humanoid robot: Case studies of dancing and catching, in 2000 Workshop on Interactive Robotics and Entertainment. 2000, vol., pp. 35-42.
24. Sakagami, Y., Watanabe, R., Aoyama, C., Matsunaga, S., Higaki, N. and Fujimura, K. The intelligent ASIMO: System overview and integration, in IEEE/RSJ International Conference on Intelligent Robot and System. 2002, vol. 3, pp. 2478-2483.
25. Sellaouti, R., Stasse, O., Kajita, S., Yokoi, K. and Kheddar, A. Faster and smoother walking of humanoid HRP-2 with passive toe joints, in IEEE/RSJ International Conference on Intelligent Robots and Systems. vol., pp. 4909-4914.
26. Shin, H. J., Kovar, L. and Gleicher, M. Physical touch-up of human motions, in IEEE Computer Society Proceedings of Pacific Graphics. 2003, vol. 194-203.
27. Suleiman, W., Yoshida, E., Kanehiro, F., Laumond, J. P. and Monin, A. On human motion imitation by humanoid robot, in IEEE International Conference on Robotics and Automation. 2008, vol., pp. 2697-2704.
28. Tsai, M. J., Pan, Y. H. and Chau, T. N., Using the Embedded CPU for Human Motion Tracking System and Humanoid Control, in 中國機械工程學會第二十六屆全國學術研討會論文集2009.
29. Tsai, M. J., Lee, H. W. and Lung, H. Y., 三維雙模掃描裝置, 案號 099-340AP-TW2, 中華民國專利申請中, 2011.
30. Tsai, M. J., Lee, H. W. and Yang, T. W., 運動編碼影像與編輯展示系統, 案號 099-340AP-TW4, 台灣發明專利申請中, 2011.
31. Yamaguchi, J. and Takanishi, A. Design of biped walking robots having antagonistic driven joints using nonlinear spring mechanism, in IEEE/RSJ International Conference on Intelligent Robots and Systems. 1997, vol. 1, pp. 251-259.
32. Yang, A. T. (1963), Application of Quaternion Algebra and Dual Numbers to the Analysis of Spatial Mechanisms, Published Doctoral Dissertation, Columbia University.
33. Yang, J., Huang, Q., Peng, Z., Zhang, L., Shi, Y. and Zhao, X. Capturing and analyzing of human motion for designing humanoid motion, in IEEE International Conference on Information Acquisition. 2005, vol., pp. 332-337.
34. 梁嘉哲 (2010), 運動追蹤系統中建立自動化註冊程序於編碼標誌框及人體模型之間, 碩士論文, 機械工程學系 國立成功大學.