| 研究生: |
徐韶鴻 Hsu, Shao-Hung |
|---|---|
| 論文名稱: |
結合布拉格光纖光柵於光時域反射感測方法之設計 Design of an Optical Time Domain Reflectometry Sensing Method with Giber Bragg Gratings |
| 指導教授: |
羅裕龍
Lo, Yu-Long |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2004 |
| 畢業學年度: | 92 |
| 語文別: | 英文 |
| 論文頁數: | 73 |
| 中文關鍵詞: | 布拉格光纖光柵 、光時域反射術 |
| 外文關鍵詞: | Fiber Bragg Grating (FBG), Optical Time Domain Reflectometry (OTDR) |
| 相關次數: | 點閱:186 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
光時域反射儀為一光纜工程中使用相當頻繁的測試儀器,可檢測出光纖長度,光鏈路損失、連接器反射損失、熔接損失、光纖斷線點、彎曲點等等參數,而且測試時只需擷取光纖線路的一端,傳統光時域反射儀在量測上使用雷利散射水平來做為量測上的標的,但由於雷利散射本身相當微弱,因此限制了量測上的動態範以及訊號穩定度,在本論文中,我們採用布拉格光纖光柵所產生的菲涅爾反射訊號來做為量測標的,可以改善前述雷利散射的問題,另外我們使用了雙波長補償的機制,來改善光時域反射儀中因雷射脈脈衝寬度增加而造成空間解析度降低的現像,並將這種方法應用於光纖鹽份濃度的量測,而在未來則可朝向感測器多工方面發展。
Optical time domain relfectometer (OTDR) is an commonly used optical fiber test instrument which is capable to detecting fiber length, fiber transmission loss, fiber connector, fiber splice loss, fiber break and fiber bending, etc, and it only needs on end of the fiber link for measurement. Traditional OTDR uses Rayleigh scattering level as the measuring indicator, but measurable dynamic range and signal stability are limited due to the intrinsic weakness of Rayleigh signal. In this thesis, we improve the problem described above by applying the Fresnel reflection signals caused by fiber Gragg grating as the measuring indicator, besides, we adapt the dual wavelength reference scheme to resolve the degradation of spatial caused by the widening of laser pulse in OTDR measurement. We further apply these techniques in optical fiber salinity measurement, in the future, further multiplexing of the sensor link can be investigated.
Bibliography
吳冠億,架空輸電系統之絕緣礙子閃絡特性研究,私立中原大學電機工程學系碩士論文,2002。
Andrezej, W. D., Marcin, R., and Marcin, S., “Compact optical fiber refractive index differential sensor for salinity measurement,” IEEE Instrumentation and Measurement Technology Conference, pp. 953-956, 1997.
Aoyama, K., Nakagawa, K. and Itoh, T., “Optical time domain reflectometry in a single-mode fiber,” J. Qunan. Electron. Vol. QE-17, pp. 862-868, 1981.
Barnoski, M. K. and Jensen, S. M., “Fiber waveguides : a novel technique for investigating attenuation characteristics,” Appl. Opt., Vol. 9, pp. 2112-2114, 1976.
Beaud, P., Schutz, J., Hodel, W., Weber, H. P., Hilgen, H. H., and Salathe, R. P., “Optical reflectomery with micrometer resolution for the investigation of integrated optical devices,“ J. Quantum electron., Vol. 25, pp. 755-759, 1989.
Brinkmeyer, E., “Backscattering in single mode fibers,” Electron. Lett., Vol. 16, pp. 320-330, 1980.
Cong, J., Zhang, X., Chen, K., and Xu, J., “Fiber optic Bragg grating based on hydrogels for measuring salinity,” Sensor and Actuators B, Vol. 87 pp. 487-490, 2002.
Derickson, D., Fiber Optic Test and Measurement, Prentice Hall, 1998.
Diniz, F. B., de Freitas, K. C. S., and de Azevedo, W. M. “Salinity measurement with polyaniline matrix coated wire electrodes,” Electrochem. Commun., Vol. 11, pp. 271-273, 1999.
Feced, R., Farhadiroushan, M., and Handerek, V. A., “Zero dead-zone OTDR with high-spatial resolution for short haul applications,” Photonics Technology letters, Vol. 9, pp. 1140-1142, 1997.
Garrett I., Todd C. J., “ Review : components and systems for long-wavelength monomode fiber transmission.” Opt. Quantum Electron. Vol. 14, pp. 95-143, 1982.
Gold, M. P., “Design of long-range single-mode OTDR,” Journal of Lightwave Technology, Vol. 3, pp. 39-46, 1985.
Gold, M. P. and Hartog, A. H., “Measurement of backscatter factor in single mode fibers,” J. Opt. Soc. Amer., Vol. 70, pp. 965-966, 1981.
Gu, X., Chen, Z., and Ansari, F., “Embedded fiber optic crack sensor for reinforced concrete structures.” ACI Structural Journal, Vol. 97, pp. 468-476, 2000.
Hill. K. O., Malo, B., Bilodeau, F., Johnson, D. C. and Albert, J. “Bragg gratings fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask,” Applied Physics Letters, Vol. 62, pp. 1035-1037, 1993.
Kharaz, A., and Jones, B. E., “A distributed optical0-fibre sensing system for multi-point humidity measurement,” Sensor and Actuator, Vol. 46, pp. 491-493, 1995.
Knowles, S. F., Jones, B. E., Purdy, S., and France, C. M., “Multiple microbending optical-fibre sensors for measurement of fuel quantity in aircraft fuel tanks,” Sensor and Actuators, Vol. 68, pp. 320-323, 1998.
MacLean, A., Moran, C., Johnstone, W., Culshaw, B., Marsh, D., and Praker, P., “Detection of hydrocarbon fuel spill using a distributed fibre optic sensor,” Sensor and Actuator A, Vol. 109, pp. 60-67, 2003.
Marakami Y., Tsuchita H., “Bending loss of coated single-mode optical fibers,” J. Quantum Electron., Vol. 14, pp. 495-501, 1978.
Marcuse. D., “Loss analysis of single-mode fiber splices.” Bell Syst. Tech. J. Vol. 56, pp. 703-718, 1977.
Matsumura H., Katsuyama T., Sugarnuma T., “Funamental study of single poloarization fibers.” 6th Europ. Conf. Opt. Commun. pp. 49-52, 1980.
Min, Z. J., Li, J. P., and Jiang, S. H., “Measurement of salt salinity in solar pond by supersonic method,” Acta Eneglae Solaris Sinica, Vol. 16, pp. 224-228, 1995.
Neumann E. G., “Single mode fibers.” Springer-Verlag, Berlin, 1988.
Othonos A., Kalli K., Fiber Bragg Gratings, Artech House, London, 1999.
Personick, S. D., “Photon probe-an optical-fiber time-domain reflectometer,” J. Bell Syst. Tech., Vol. 56, pp. 355-366, 1977.
Tateda, M., and Horiguchi, T., “Advances in optical time-domain reflectometry,” J. Lightwave technology, Vol. 7, pp. 1217-1224, 1989.
Quan, X. and Fry, E. S., “Empirical equation for the index of refraction of seawater,” Applied Optics, Vol. 34, pp. 3477-3480. 1995.
Renner H. “Bending losses of coated single-mode fibers : a simple approach,” J. Lightwave Technol. Vol. 10, pp. 544-551, 1992.
Siegman A. E., “An introduction to lasers and masers.” McGraw-Hill, New York, 1971.
Vassallo C. “Scaler-field theory and 2-D ray theory for bent single-mode weaky guiding optical fibers,” J. lightwave Technol. Vol. 3, pp. 416-423, 1985.
Yang, C., Chen, S., and Yang, G., “Fiber optical liquid level sensor under cryogenic environment,” Sensor and Actuator, Vol. 94, pp. 69-75, 2001.