| 研究生: |
許家傑 Hsu, Chia-Chieh |
|---|---|
| 論文名稱: |
磊晶拓樸絕緣體Cry(Sb1-xBix)2-yTe3之物理特性研究 Epitaxial Growth and Study of Topological Insulator Cry(Sb1-xBix)2-yTe3 |
| 指導教授: |
黃榮俊
Huang, Jung Chun Andrew |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 物理學系 Department of Physics |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 中文 |
| 論文頁數: | 81 |
| 中文關鍵詞: | 分子束磊晶 、磁性拓樸絕緣體 、Cry(BixSb1-x)2-yTe3 、量子異常霍爾效應 |
| 外文關鍵詞: | Molecular beam epitaxy(MBE), Cry(BixSb1-x)2-yTe3, Magnetic topological insulator, Quantum anomalous Hall effect |
| 相關次數: | 點閱:85 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本實驗在分子束磊晶系統中於藍寶石基板製成鐵磁性拓樸絕緣體,其透過調控氣體分壓比、成長溫度方法,將磁性物質鉻(Chromium)摻雜入三元拓樸絕緣體(BixSb1-x)2Te3,形成四元拓樸絕緣體Cry(BixSb1-x)2-yTe3薄膜並對其研究。
首先是晶體結構部分,先由臨場(in situ)之反射式高能量電子繞射(Reflection high-energy electron diffraction,RHEED)初步判斷薄膜結構與平整度,再以X-光繞射儀量測觀測Cr摻雜使結構變化,其吸收光譜之趨勢也符合理論計算趨勢,並使用原子力顯微鏡AFM來觀察拓樸絕緣體層狀表面。元素分析部份,分別用拉曼光譜與X射線光電子能譜(X-ray Photoelectron Spectroscopy, XPS),觀察樣品Cr元素成份的摻雜。
接著量測Cry(BixSb1-x)2-yTe3薄膜之磁性與電性。磁性部分,利用超導量子干涉(Superconducting Quantum Interference Device, SQUID)量測出在低溫下,Cry(BixSb1-x)2-yTe3薄膜有鐵磁性特性。電性傳輸則是將磁性拓樸絕緣體製成特定圖形,並量薄膜於低溫、弱磁場下是否有量子異常霍爾效應電性傳輸表現與特性。最後再製成磁性拓樸絕緣體/拓樸絕緣體/磁性拓樸絕緣體的三層異質結構,調控中間拓樸絕緣體厚度研究異質結構之電性表現,有無軸子態絕緣體的趨勢出現。
In this experiment, we grow the Cry(Sb1-xBix)2-yTe3 thin film on the sapphire substrate by the molecular beam epitaxy system. We change the rate of Cr vapor deposition to adjust the content ratio of Cr in film. The first experiment part is the crystal structure, we use in-situ reflective high-energy electron diffraction (RHEED)、X-ray Diffraction(XRD) to measure the roughness and single crystal of thin film. Then we check XAS is similar to the theoretical paper. And we use atomic force microscope (AFM) to show the morphology of the TI doped Cr. In element analysist part, we report Cr substitute Sb、Bi by the Raman spectroscopy and X-ray Photoelectron Spectroscopy (XPS).Since Cry(Sb1-xBix)2-yTe3 thin film is ferromagnetic at very low temperature, we investigate the magnetic property by Superconducting Quantum Interference Device (SQUID). We measure the ferromagnetic at 5K、20K、50K successfully. Then we lithograph sample to Hall bar pattern, and measure the electric transport property at 295K、16K、10K、5K. At PPMS temperature at 5K and 10K, we can find the quantum anomalous Hall effect under a weak magnetic field. Final we grow the MTI/TI/MTI and adjust the thickness of TI, we find that sample with 15nm TI has the behavior of axion insulator.
[1] M. E. Fisher and N. Nagaosa, "Profile of David J. Thouless, J. Michael Kosterlitz, and F. Duncan M. Haldane, 2016 Nobel Laureates in Physics," Proc Natl Acad Sci U S A, vol. 114, no. 4, pp. 626-628, Jan 24 2017, doi: 10.1073/pnas.1620134114.
[2] N. Nagaosa, J. Sinova, S. Onoda, A. H. MacDonald, and N. P. Ong, "Anomalous Hall effect," Reviews of Modern Physics, vol. 82, no. 2, pp. 1539-1592, 2010, doi: 10.1103/RevModPhys.82.1539.
[3] C. L. Kane and E. J. Mele, "Quantum spin Hall effect in graphene," Phys Rev Lett, vol. 95, no. 22, p. 226801, Nov 25 2005, doi: 10.1103/PhysRevLett.95.226801.
[4] X.-L. Qi and S.-C. Zhang, "The quantum spin Hall effect and topological insulators," Physics Today, vol. 63, no. 1, pp. 33-38, 2010, doi: 10.1063/1.3293411.
[5] H. Zhang, C.-X. Liu, X.-L. Qi, X. Dai, Z. Fang, and S.-C. Zhang, "Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface," Nature Physics, vol. 5, no. 6, pp. 438-442, 2009, doi: 10.1038/nphys1270.
[6] J. Zhang et al., "Band structure engineering in (Bi(1-x)Sb(x))(2)Te(3) ternary topological insulators," Nat Commun, vol. 2, p. 574, Dec 6 2011, doi: 10.1038/ncomms1588.
[7] Mingda Li1, Cui-Zu Chang2*, Lijun Wu3, Jing Tao3, Weiwei Zhao6, Moses H. W. Chan6, Jagadeesh S. Moodera2,5, Ju Li1,4, and Yimei Zhu3*, "Experimental Verification of Van Vleck Nature of Long-Range Ferromagnetic Order in Vanadium-Doped Three-dimensional topological insulator Sb2te3," PACS.
[8] C. Z. Chang et al., "Thin films of magnetically doped topological insulator with carrier-independent long-range ferromagnetic order," Adv Mater, vol. 25, no. 7, pp. 1065-70, Feb 20 2013, doi: 10.1002/adma.201203493.
[9] Cui-Zu Chang, 2* Jinsong Zhang,1* Xiao Feng,1,2* Jie Shen,2* Zuocheng Zhang,1 Minghua Guo,1 Kang Li,2 Yunbo Ou,2 Pang Wei,2 Li-Li Wang,2 Zhong-Qing Ji,2 Yang Feng,1 Shuaihua Ji,1 Xi Chen,1 Jinfeng Jia,1 Xi Dai,2 Zhong Fang,2 Shou-Cheng Zhang,3 Ke He,2† Yayu Wang,1† Li Lu,2 Xu-Cun Ma,2 Qi-Kun Xue1†, "Experimental Observation of the Quantum Anomalous Hall Effect in a Magnetic Topological Insulator."
[10] X. F. Kou et al., "Interplay between Different Magnetisms in Cr-Doped Topological Insulators," (in English), Acs Nano, vol. 7, no. 10, pp. 9205-9212, Oct 2013, doi: 10.1021/nn4038145.
[11] M. Mogi et al., "A magnetic heterostructure of topological insulators as a candidate for an axion insulator," Nat Mater, vol. 16, no. 5, pp. 516-521, May 2017, doi: 10.1038/nmat4855.
[12] "J. C. A. Huang, ph. D Thesis University of Illinois, 1992."
[13] C. Z. Chang and M. Li, "Quantum anomalous Hall effect in time-reversal-symmetry breaking topological insulators," J Phys Condens Matter, vol. 28, no. 12, p. 123002, Mar 31 2016, doi: 10.1088/0953-8984/28/12/123002.
[14] "E. Hall, "On a new action of the magnet on electric currents," American Journal of Science, no. 111, pp. 200-205, 1880."
[15] E. H. Hall, "XVIII. On the “Rotational Coefficient” in nickel and cobalt," The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, vol. 12, no. 74, pp. 157-172, 1881/09/01 1881, doi: 10.1080/14786448108627086.
[16] K. v. Klitzing, G. Dorda, and M. Pepper, "New Method for High-Accuracy Determination of the Fine-Structure Constant Based on Quantized Hall Resistance," Physical Review Letters, vol. 45, no. 6, pp. 494-497, 1980, doi: 10.1103/PhysRevLett.45.494.
[17] "Dyakonov M I and Perel V I 1971 Phys. Lett. A 35 459."
[18] Y. K. Kato, R. C. Myers, A. C. Gossard, and D. D. Awschalom, "Observation of the Spin Hall Effect in Semiconductors," Science, vol. 306, no. 5703, pp. 1910-1913, 2004, doi: 10.1126/science.1105514.
[19] C.-X. Liu, X.-L. Qi, X. Dai, Z. Fang, and S.-C. Zhang, "Quantum Anomalous Hall Effect in Hg1-yMnyTe Quantum Wells," Physical Review Letters, vol. 101, no. 14, p. 146802, 10/01/ 2008, doi: 10.1103/PhysRevLett.101.146802.
[20] Y. Xia et al., "Observation of a large-gap topological-insulator class with a single Dirac cone on the surface," Nature Physics, vol. 5, no. 6, pp. 398-402, 2009/06/01 2009, doi: 10.1038/nphys1274.
[21] H. Zhang, C.-X. Liu, X.-L. Qi, X. Dai, Z. Fang, and S.-C. Zhang, "Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface," Nature Physics, vol. 5, p. 438, June 01, 2009 2009. [Online]. Available: https://ui.adsabs.harvard.edu/abs/2009NatPh...5..438Z.
[22] M. S. Lund and C. Leighton, "Design and performance of a molecular beam epitaxy system for metallic heterostructure deposition illustrated by a study of the controlled epitaxy of Cu(111)∕Al2O3(0001)," Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol. 22, no. 5, pp. 2027-2034, 2004, doi: 10.1116/1.1781181.
[23] R. Gutzler, W. M. Heckl, and M. Lackinger, "Combination of a Knudsen effusion cell with a quartz crystal microbalance: in situ measurement of molecular evaporation rates with a fully functional deposition source," Rev Sci Instrum, vol. 81, no. 1, p. 015108, Jan 2010, doi: 10.1063/1.3292510.
[24] J. M. Griffin, A. C. Forse, W.-Y. Tsai, P.-L. Taberna, P. Simon, and C. P. Grey, "In situ NMR and electrochemical quartz crystal microbalance techniques reveal the structure of the electrical double layer in supercapacitors," Nature Materials, vol. 14, no. 8, pp. 812-819, 2015/08/01 2015, doi: 10.1038/nmat4318.
[25] 董弈, "調控多元硒化鉍拓樸絕緣體其電子結構傳輸磁性研究," 2017.
[26] 林宗謀, "磊晶三元拓樸絕緣體之費米能階調控與電性研究," doi: 10.6844/NCKU201902280.
[27] M. Yasaka, "X-ray thin-film measurement techniques," X-ray reflectivity measurement. The Rigaku Journal, vol. 26, no. 12, pp. 1-9," 2010.
[28] 張哲華, "厚度對於鉻及銻共摻硒化鉍拓樸絕緣體其磁電性影響之研究," 2017.
[29] K. Shahil, M. Hossain, D. Teweldebrhan, and A. Balandin, "Crystal symmetry breaking in few-quintuple Bi 2 Te 3 films: Applications in nanometrology of topological insulators," Applied Physics Letters, vol. 96, no. 15, p. 153103, 2010.
[30] 楊明憲, "透過調控Sb2Te3薄膜厚度觀察雙層異質結構的費米能階改變與其物理特性," doi: 10.6844/NCKU201900503.
[31] 楊鴻昌, "最敏感的元件SQUID及其前瞻性應用," 物理雙月刊(廿四卷五期), 2002年10月.
[32] K. Ramasamy, D. Mazumdar, R. D. Bennett, and A. Gupta, "Syntheses and magnetic properties of Cr2Te3 and CuCr2Te4 nanocrystals," Chem Commun (Camb), vol. 48, no. 45, pp. 5656-8, Jun 7 2012, doi: 10.1039/c2cc32021e.
[33] Z. Liu et al., "Local atomic and electronic structures in ferromagnetic topological insulator Cr-doped(BixSb1−x)2Te3studied by XAFS andab initiocalculations," Physical Review B, vol. 92, no. 10, 2015, doi: 10.1103/PhysRevB.92.100101.
[34] Y. Feng et al., "Tunable chiral and helical edge state transport in a magnetic topological insulator bilayer," Physical Review B, vol. 100, no. 16, 2019, doi: 10.1103/PhysRevB.100.165403