| 研究生: |
張博竣 Zhang, Bo-Jun |
|---|---|
| 論文名稱: |
具有不完美介面及壓電黏彈效應的 2-2 層板複合材料之磁電耦合響應 Magnetoelectric response of 2-2 laminated composites containing imperfect interfaces and visco-electro-elastic constituents |
| 指導教授: |
林建宏
Lin, Chien-Hong |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2024 |
| 畢業學年度: | 112 |
| 語文別: | 英文 |
| 論文頁數: | 69 |
| 中文關鍵詞: | 磁電複合材料 、不完美介面 、瞬態響應 、微觀力學 |
| 外文關鍵詞: | Magnetoelectric composite, imperfect interface, time-dependent response, micromechanics |
| 相關次數: | 點閱:44 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究探討了具有不完美介面磁電複合材料與時間相依的磁電耦合行為,透過層板 式的結構將磁致伸縮材料與壓電材料結合,所組成的層板磁電複合材料,由兩種材 料之間相互作用所引起的磁電耦合行為也被廣泛運用於各種設備中。在壓電材料之 中,柔性壓電陶瓷與壓電聚合物表現出與時間相依的行為,為了解決此問題,使用 了兩種數學方法來處理與時間相依的本構方程 。再來為了使壓電材料與磁致伸縮材 料組合成一體,經常使用的方法是使用黏合劑將兩者連接在一起,然而這會導致在 複合材料的介面處會產生不連續,為了更貼近實際的情形,使用了二次均質化的過 程,將此介面層的影響納入考量。為了預測複合材料的有效響應,使用了 simplified unit-cell 的微觀力學模型,先將磁致伸縮材料與介面層進行一次均質化,再將均質化 後的材料與壓電材料進行第二次均質化。為了驗證模型的可行性,與過去文獻中的 實驗數據進行了比對,另外使用第二種 Mori-Tanaka 微觀力學模型,來處理相同的問 題,並討論了不同的參數研究,包含磁致伸縮材料的體積分率、介面層的含量以及 施加的負載類型。
This study explores the time-dependent magnetoelectric behavior of magnetoelectric composite with imperfect interfaces. Magnetostrictive materials and piezoelectric materials are combined through a laminate structure. The magnetoelectric coupling behavior caused by the interaction between two materials is also widely used in various devices. Among piezoelectric materials, flexible piezoelectric ceramics and piezoelectric polymers exhibit time-dependent behavior. To solve this problem, two mathematical methods are used to deal with time-dependent constitutive equations. Next, in order to combine the piezoelectric material and the magnetostrictive material into one, the often-used method is to use an adhesive to connect the two together. However, this will cause discontinuities at the interface of the composite material. To be closer to reality, in this case, a secondary homogenization process is used to take the influence of this interface layer into consideration. To predict the effective response of the composite material, a simplified unit-cell micromechanical model is used. The magnetostrictive material and the interface layer are first homogenized, and then the homogenized material and the piezoelectric material are homogenized a second time. In order to verify the feasibility of the model, comparisons were made with experimental data in the past literature. In addition, a second Mori-Tanaka micromechanical model was used to deal with the same problem, and different parameter studies were discussed, including volume fraction of magnetostrictive material, interface layer content, and the type of load applied.
1. Jiles, D. and J. Thoelke (1995). "Magnetization and magnetostriction in terbium–dysprosium–iron alloys." physica status solidi (a) 147(2): 535-551.
2. Kim, J. Y. (2011) "Micromechanical analysis of effective properties of magneto-electro-thermo-elastic multilayer composites." International Journal of Engineering Science 49(9): 1001-1018.
3. Zhang, P., Qi, C., Fang, H., Ma, C., Huang, Y (2019) "Semi-analytical analysis of static and dynamic responses for laminated magneto-electro-elastic plates." Composite Structures, 222, 110933.
4. Bichurin, M. I., Petrov, V. M., Srinivasan, G. (2003) "Theory of low-frequency magnetoelectric coupling in magnetostrictive-piezoelectric bilayers" American Physical Society, 68(5): 054402.
5. Shen, K. J. and C. H. Lin (2021). "Micromechanical modeling of time-dependent and nonlinear responses of magnetostrictive polymer composites." Acta Mechanica 232(3):983-1003.
6. Lin, C. H. and A. Muliana (2015). "Nonlinear electro-mechanical responses of functionally graded piezoelectric beams." Composites Part B: Engineering 72: 53-64.
7. Abate, J. and Valkó, P. P. (2004). "Multi-precision Laplace transform inversion." International Journal for Numerical Methods in Engineering 60(5): 979-993.
8. Abbundi, R. and Clark, A. E. (1977). "Anomalous thermal expansion and magnetostriction of single crystal Tb0.27Dy0.73Fe2." IEEE Transactions on Magnetics 13(5): 1519-1520.
9. Aboudi, J. (2001). "Micromechanical analysis of fully coupled electro-magneto-thermo-elastic multiphase composites." Smart Materials and Structures 10(5): 867.
10. Adnan Islam, R. and Priya, S. (2012). "Progress in dual (Piezoelectric-Magnetostrictive) phase magnetoelectric sintered composites." Advances in Condensed Matter Physics 2012(1): 320612.
11. Avellaneda, M. and Harshé, G. (1994). "Magnetoelectric Effect in Piezoelectric/Magnetostrictive Multilayer (2-2) Composites." Journal of Intelligent Material Systems and Structures 5(4): 501-513.
12. Chu, Z., Pourhosseiniasl, M. and Dong, S. (2018). "Review of multi-layered magnetoelectric composite materials and devices applications." Journal of Physics D: Applied Physics 51(24): 243001.
13. Clark, A. E. and Belson, H. S. (1972). "Giant room-temperature magnetostrictions in TbFe2 and DyFe2." Physical Review B 5(9): 3642-3644.
14. Cullen, J. R. and Clark, A. E. (1977). "Magnetostriction and structural distortion in rare-earth intermetallics." Physical Review B 15(9): 4510-4515.
15. Dai, X., Wen, Y., Li, P., Yang, J. and Li, M. (2011). "Energy harvesting from mechanical vibrations using multiple magnetostrictive/piezoelectric composite transducers." A: Physical 166(1): 94-101.
16. Dinesh Kumar, S., Gupta, S., Swain, A. B., Subramanian, V., Padmanabhan, M. K. and Mahajan, R. L. (2021). "Large converse magnetoelectric effect in Sm doped Pb(Mg1/3Nb2/3)-PbTiO3 and NiFe2O4 laminate composite." Journal of Alloys and Compounds 858: 157684.
17. Fang, F., Zhao, C. P. and Yang, W. (2011). "Thickness effects on magnetoelectric coupling for Metglas/PZT/Metglas laminates." Science China: Physics, Mechanics and Astronomy, 54(4): 581-585.
18. Folen, V. J., Rado, G. T. and Stalder, E. W. (1961). "Anisotropy of the magnetoelectric effect in Cr2O3." Physical Review Letters, 6(11): 607-608.
19. Haj-Ali, R. M. and Muliana, A. H. (2003). "A micromechanical constitutive framework for the nonlinear viscoelastic behavior of pultruded composite materials." International Journal of Solids and Structures 40(5): 1037-1057.
20. Hill, R. (1965). "A self-consistent mechanics of composite materials." Journal of the Mechanics and Physics of Solids 13(4): 213-222.
21. Hu, Z. M. and Li, J. (2021). "Interfacial bonding effect on nonlinear magnetoelectric response of multiferroic composites." Mechanics of Materials 153: 103660.
22. Hwang, G. T., Palneedi, H., Jung, B. M., Kwon, S. J., Peddigari, M., Min, Y., Kim, J. W., Ahn, C. W., Choi, J. J., Hahn, B. D., Choi, J. H., Yoon, W. H., Park, D. S., Lee, S. B., Choe, Y., Kim, K. H. and Ryu, J. (2018). "Enhancement of Magnetoelectric Conversion Achieved by Optimization of Interfacial Adhesion Layer in Laminate Composites." ACS Applied Materials and Interfaces 10(38): 32323-32330.
23. Hyeon, D. Y., Nam, C., Ham, S. S., Hwang, G. T., Yi, S., Kim, K. T. and Park, K. Il. (2021). "Enhanced Energy Conversion Performance of a Magneto–Mechano–Electric Generator Using a Laminate Composite Made of Piezoelectric Polymer and Metallic Glass." Advanced Electronic Materials 7(1): 2000969.
24. Jiang, Q. H., Shen, Z. J., Zhou, J. P., Shi, Z. and Nan, C. W. (2007). "Magnetoelectric composites of nickel ferrite and lead zirconnate titanate prepared by spark plasma sintering." Journal of the European Ceramic Society 27(1): 279-284.
25. Kawai, H. (1969). "The Piezoelectricity of Poly (vinylidene Fluoride)." Japanese Journal of Applied Physics 8(7): 975.
26. Khan, K. A., Muliana, A. H., Atitallah, H. Ben, and Ounaies, Z. (2016). "Time-dependent and energy dissipation effects on the electro-mechanical response of PZTs." Mechanics of Materials 102: 74-89.
27. Kuo, H. Y., Wu, T. J. and Pan, E. (2018). "Multilayer multiferroic composites with imperfect interfaces." Smart Materials and Structures 27(7): 075032.
28. Laws, N. and McLaughlin, R. (1978). "SELF-CONSISTENT ESTIMATES FOR THE VISCOELASTIC CREEP COMPLIANCES OF COMPOSITE MATERIALS." Proc R Soc London Ser A 359(1697): 251-273.
29. Li, Y. W., Li, Y. H. and Li, F. X. (2015). "Creep behavior of soft and hard PZT ceramics during mechanical loading and unloading." Journal of the European Ceramic Society 35(14): 3827-3834.
30. Lin, C. H. and Muliana, A. (2014). "Micromechanical models for the effective time-dependent and nonlinear electromechanical responses of piezoelectric composites." Journal of Intelligent Material Systems and Structures 25(11): 1306-1322.
31. Lin, C. H. and Lin, Y. Z. (2021). "Nonlinear magnetoelectric coupling in magnetostrictive-piezoelectric composites." Composite Structures 276: 114558.
32. Mori, T. and Tanaka, K. (1973). "Average stress in matrix and average elastic energy of materials with misfitting inclusions." Acta Metallurgica 21(5): 571-574.
33. Palneedi, H., Annapureddy, V., Priya, S. and Ryu, J. (2016). "Status and perspectives of multiferroic magnetoelectric composite materials and applications." Actuators 5(1).
34. Pandey, A. H., Varade, P., Miriyala, K., Sowmya, N. S., Kumar, A., Arockiarajan, A., Kulkarni, A. R. and Venkataramani, N. (2021). "Magnetoelectric response in lead-free Na0.4K0.1Bi0.5TiO3/NiFe2O4 laminated composites." Materials Today Communications 26: 101898.
35. Pindera, M. ‐J, Williams, T. O. and Macheret, Y. (1989). "Time‐dependent response of aramid‐epoxy‐aluminum sheet, ARALL, laminates." Polymer Composites 10(5): 328-336.
36. Priya, S., Islam, R., Dong, S. and Viehland, D. (2007). "Recent advancements in magnetoelectric particulate and laminate composites." Journal of Electroceramics, 19(1): 149-166.
37. Takahash, S. (1982). "Effects Of Impurity Doping In Lead Zirconate-Titanate Ceramics." Ferroelectrics 41(1): 143-156.
38. Eshelby, J. D. (1957). "The determination of the elastic field of an ellipsoidal inclusion, and related problems." Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences 241(1226): 376-396.
39. Van Run, A. M. J. G., Terrell, D. R. and Scholing, J. H. (1974). "An in situ grown eutectic magnetoelectric composite material." Journal of Materials Science 9(10): 1710-1714.
40. Wang, Y. and Weng, G. J. (2016). "On Eshelby’s S-tensor under various magneto-electro-elastic constitutive settings, and its application to multiferroic composites." Journal of Micromechanics and Molecular Physics 01: 1640002.
41. Wang, Y., Xia, X. and Weng, G. J. (2017). "Magnetoelectric coupling and interface effects of multiferroic composites under stress-prescribed boundary condition." Reviews on Advanced Materials Science 48(1): 78-90.
42. Yang, H., Zhang, J., Lin, Y. and Wang, T. (2017). "High Curie temperature and enhanced magnetoelectric properties of the laminated Li0.058(Na0.535K0.48)0.942NbO3/Co0.6Zn0.4Fe1.7 Mn0.3O4 composites." Scientific Reports 7(1): 44855.
43. Yang, N., Wu, H., Wang, S., Yuan, G., Zhang, J., Sokolov, O., Bichurin, M. I., Wang, K. and Wang, Y. (2021). "Ultrasensitive flexible magnetoelectric sensor." APL Materials 9(2).
44. Zhou, D. and Kamlah, M. (2006). "Room-temperature creep of soft PZT under static electrical and compressive stress loading." Acta Materialia 54(5): 1389-1396.
45. Zhou, J. P., He, H. C., Shi, Z., Liu, G. and Nan, C. W. (2006). "Dielectric, magnetic, and magnetoelectric properties of laminated PbZr0.52Ti0.48O3 / CoFe2O4 composite ceramics." Journal of Applied Physics 100(9).
校內:2029-08-01公開