簡易檢索 / 詳目顯示

研究生: 盧惠萍
Lu, Hui-pin
論文名稱: 長期聲音刺激對幼鼠聽覺中樞神經及血管重塑之影響
Time course and extent of activity-driven changes of neurons and vasculature in the central auditory system of young adult rats
指導教授: 潘偉豐
Poon, Wai-Fung Paul
陳淑姿
Chene, Shur-Tzu
學位類別: 博士
Doctor
系所名稱: 醫學院 - 基礎醫學研究所
Institute of Basic Medical Sciences
論文出版年: 2009
畢業學年度: 97
語文別: 英文
論文頁數: 128
中文關鍵詞: 長期聲音刺激中樞聽覺神經系統神經可塑性過度神經元刺激
外文關鍵詞: prolonged sound exposure, central auditory system, neural plasticity, over-activity
相關次數: 點閱:172下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 過度神經元刺激可促進腦神經可塑性,腦血循環與神經元活性息息相關。聲音刺激對幼鼠中樞聽覺神經系統之腦神經元及腦血管網絡之關係並不清楚。我們有興趣探討長期聲音刺激對聽覺中樞腦神經及血管結構之關係。我們利用幼鼠(出生第三週)為研究主要動物模式,給予低音頻刺激,在不同的音頻刺激時間觀察聽覺中樞腦神經元及相關腦區血管結構變化。首先我們利用功能性神經活性標幟(Fos),標定幼鼠聽覺中腦(下丘)及耳蝸神經元在短時間對不同音頻的活性反應;實驗結果發現功能性神經活性標幟(Fos)表現於低音頻區而且表現的時間由十分鐘開始出現延至九十分鐘,表示短時間音頻刺激可誘發聽腦神經元活性變化。第二部份,我們觀察音頻刺激對聽覺中腦下丘及主要聽覺皮層的神經細胞之顯微結構(細胞核及細胞質)之影響;發現在音頻刺激後第五天後,聽覺中腦神經元之細胞質在低音頻區有增大現象,增長音頻刺激時間到第七天,聽覺神經元的增大現象由低音頻區擴大到高音頻區的趨勢。第三部份,我們探討音頻刺激的不同時間周期對聽覺中腦及主要聽覺皮層的血管結構之影響;發現音頻刺激後第三天,圍繞小血管旁的細胞數目表現量增加;音頻刺激後第七天,聽覺中腦及主要聽覺皮層的微血管密度增加,表示音頻刺激可能同時誘發聽覺神經元或血管的變化。最後我們探討音頻刺激對聽覺腦神經細胞及誘發血管重塑之相關機制,觀察細胞增生標幟(BrdU)神經膠細胞(GFAP),促進血管新生因子(VEGF)之表現;發現音頻後第七天,已分化的細胞表現於聽覺中腦及聽覺皮層;進一步以雙重染色法確認分化細胞的來源,推測音頻刺激下可能同時誘發神經元或神經膠細胞分化;也發現音頻刺激後聽覺腦區的促進血管新生因子表現量增加的趨勢,推測音頻刺激可能誘發促進血管新生因子之表現進而促進血管新生。結果表示長期音頻刺激可誘發幼鼠聽覺中樞神經細胞與腦血管新生之相關性,實驗結果與文獻報導相關的刺激腦神經元活性可促進腦神經及腦血管可塑性吻合。

    Over-activity of neurons leads to plastic changes in brain cells. Cerebral blood flow is also known to be tightly coupled to neural activities. Whether over-activity induced in a sensory system can drive both neural and vascular remodeling remain unclear. To answer this question, we used the auditory midbrain and cortex of young adult rats as a model, and investigated in 4 experiments the time course and details of sound exposure effects over a period of 2 weeks (immuno-histochemical study of Fos-expression, cyto-morphometrical study of neuronal size, morphometrical study of micro-vasculature, and cyto- and histo- chemical study with BrdU, GFAP and VEGF). Results from the first experiment revealed tonotopic Fos-expression in auditory neurons within hours after sound stimulation, with different subpopulations of neurons activated by sounds of different time-varying properties. Findings are consistent with an early onset of neural changes which could precede vascular remodeling. Results from the second experiment showed a marked sound-driven enlargement of neuronal size in a tonotopic manner on exposure day 5, and the effect spread to all frequency regions on day 7, but without affecting other non-auditory system. Results from the third experiment showed that sound-driven increases in the juxta-vascular cell density appeared first on day 3; whereas capillary density increased later (day 7). Findings suggested that vascular changes may occur concomitantly with, if not earlier than, the change in neuronal size. Results from the fourth experiment showed that sound-driven cell divisions appeared in the auditory system. Result on double-labeling the divided cells with GFAP was inconclusive, although information derived from the size histograms of cell nuclei suggested that dividing cells might come from both glia and neurons. The elevated level of the VEGF is consistent with a possible causal relationship with the observed sound-driven changes in neurons and blood vessels. Our findings represent the first evidence that over-activity with sound stimulation promotes both neuronal and micro-vascular development in the central auditory system in a temporally-specific and modality-dependent manner. Results on the rather concomitant plastic changes in neurons and blood vessels are consistent with the tightly-coupled nature of the neuro-vascular system in the young adult brain.

    Contents……………………i List of Tables……………...iv List of Figures……………..v Acknowledgment………..viii Abstract……………………1 Chinese Abstract……………...3 Chapter 1 General introduction………....4 Specific aims……………10 Chapter 2 Materials and Methods……………………………………………………..14 Experiment on nuclear size of neurons expressing Fos……………….14 Experiment on measuring neuronal size after sound exposure……….17 Experiment on determining time course and extent of cerebral vascular remodeling after sound exposure……………………………21 Experiment on exploring possible mechanisms of sound induced neural and vascular remodeling……………………………………..…24 Chapter 3 Nuclear size of c-Fos expression at the auditory brainstem is related to the time-varying nature of the acoustic stimuli……………...30 Abstract………..30 Introduction……32 Results……...35 Discussion…...38 Chapter 4 Enlargement of neuronal size in rat auditory midbrain and cortex after prolonged sound exposure……….46 Abstract……………………………………………………………………..46 Introduction……………48 Results………...50 Discussion….55 Chapter 5 Time course and extent of cerebral vascular remodeling after prolonged sound exposure…………………….....71 Abstract……….71 Introduction……………………73 Results………………………………...76 Discussion…………………….....79 Chapter 6 Possible mechanisms of sound induced neural and vascular remodeling……………...85 Abstract………..85 Introduction…………………………87 Results……..90 Discussion…..93 Chapter 7 Summary……102 References……………..105

    Aberg E, Hofstetter CP, Olson L, Brene S. Moderate ethanol consumption increases hippocampal cell proliferation and neurogenesis in the adult mouse. Int. J. Neuropsychopharmacol. 8 (2005) 557-567.
    Adams JC. Sound stimulation induces Fos-related antigens in cells with common morphological properties throughout the auditory brainstem. J. Comp. Neurol. 361 (1995) 645-668.
    Aitkin LM. The auditory midbrain. Humana Press, Clifton, 1986, 246 pp.
    Argandona EG, Lafuente JV. Effects of dark-rearing on the vascularization of the developmental rat visual cortex. Brain Res. 732 (1996) 43-51.
    Argandona EG, Lafuente JV. Influence of visual experience deprivation on the postnatal development of the microvascular bed in layer IV of the rat visual cortex. Brain Res. 855 (2000) 137-142.
    Bal A, Smialowska M. The influence of some antidepressant drugs on the nuclear volume of rat cingular cortex cells in culture. Neurosci. 22 (1987) 671-674.
    Berendes HD. Salivary gland function and chromosomal puffing patterns in Drosophila hydei. Chromosoma 17 (1965) 35-77.
    Black JE, Kodish IM, Grossman AW, Klintsova AY, Orlovskaya D, Vostrikov V, Uranova N, Greenough WT. Pathology of layer V pyramidal neurons in the prefrontal cortex of patients with schizophrenia. Am. J. Psychiatry 161 (2004) 742-744.
    Black JE, Sirevaag AM, Greenough WT. Complex experience promotes capillary formation in young rat visual cortex. Neurosci. Lett. 83 (1987) 351-355.
    Bikfalvi A, Bicknell R. Recent advances in angiogenesis, anti-angiogenesis and vascular targeting. Trends Pharmacol. Sci. 136 (2002) 165-172.
    Bosch TJ, Maslam S, Roberts BL. A polyclonal antibody against mammalian FOS can be used as a cytoplasmic neuronal activity marker in a teleost fish. J. Neurosci. Methods. 58 (1995) 173-179.
    Brezun JM, Daszuta A. Depletion in serotonin decreases neurogenesis in the dentate gyrus and the Subventricular zone of adult rats. Neuroscience 89 (1999) 999-1002.
    Bredy TW, Grant RJ, Champagne DL, Meaney MJ. Maternal care influences neuronal survival in the hippocampus of the rat. Eur. J. Neurosci. 18 (2003) 2903-2909.
    Briones TL, Klintsova AY, Greenough WT. Stability of synaptic plasticity in the adult rat visual cortex induced by complex environment exposure. Brain Res. 20 (2004) 130-135.
    Brown MC, Liu TS. Fos-like immunoreactivity in central auditory neurons of the mouse. J. Comp. Neurol. 357 (1995) 85-97.
    Bundgaard MJ, Regeur L, Gundersen HJG, Pakkenberg B. Size of neocortical neurons in control subjects and in Alzheimer's disease. J. Anat. 198 (2001) 481-489.
    Carmeliet P, Jain RK. Angiogenesis in cancer and other diseases. Nature 407 (2000) 249-257.
    Carmeliet P. Mechanisms of angiogenesis and arteriogenesis. Nature Med. 6 (2000) 389-395.
    Casella GT, Bunge MB, Wood PM. Improved immunocytochemical identification of neural, endothelial, and inflammatory cell types in paraffin-embedded injured adult rat spinal cord. J. Neurosci. Methods. 139 (2004) 1-11.
    Casseday JH, Fremouw T, Covey E. The inferior colliculus: Hub of the auditory system. In: Integrative Functions in the Mammalian Auditory Pathway. Springer-Verlag, New York, 2002, 238-318.
    Chen J, Zhang ZG, Li Y, Wang Y, Wang L, Jiang H, Zhang C, Lu M, Katakowski M, Feldkamp CS, Chopp M. Statins induce angiogenesis, neurogenesis, and synaptogenesis after stroke. Ann. Neurol. 53 (2003) 743-751.
    Chiu TW, Poon PWF. Basic response determinants for amplitude modulation of single neurons in the auditory midbrain. Exp. Brain Res. 134 (2000) 237-245.
    Chiu TW, Poon PW, Chan WY, Yew DTW. Long-term changes of response in the inferior colliculus of senescence accelerated mice after early sound exposure. J. Neurol. Sci. 216 (2003) 143-151.
    Clopton BM, Winfield JA. Tonotopic organization in the inferior colliculus of the rat. Brain Res. 56 (1973) 355-358.
    Cotter D, Mackay D, Chana G, Beasley C, Landau S, Everall IP. Reduced neuronal size and glial cell density in area 9 of the dorsolateral prefrontal cortex in subjects with major depressive disorder. Cereb. Cortex 12 (2002) 386-394.
    Cox SB, Woolsey TA, Rovainen CM. Localized dynamic changes in cortical blood flow with whisker stimulation correspond to matched vascular and neuronal architecture of rat barrels. J. Cere. Blood Flow. Metab. 13 (1993) 899-913.
    Culley WJ, Lineberger RO. Effect of undernutrition on the size and composition of the rat brain. J. Nutrition 96 (1968) 375-381.
    Davis AE, Gimenez A. Cognitive-behavioral recovery in comatose patients following auditory sensory stimulation. J. Neurosci. Nurs. 35 (2003) 202-209.
    deCharms RC, Blacke DT, Merzenich MM. Optimizing sound features for cortical neurons. Science 280 (1998) 1439-1442.
    DeFilipe J, Jones EG (Eds.). Cajal on the Cerebral Cortex, Oxford University Press, New York, 1988, 672 pp.
    Devor A, Dunn AK, Andermann ML, Ulbert I, Boas DA, Dale AM. Coupling of total hemoglobin concentration, oxygenation, and neural activity in rat somatosensory cortex. Neuron 39 (2003) 353-359.
    de Villers-Sidani E, Chang EF, Bao S, Merzenich MM. Critical period window for spectral tuning defined in the primary auditory cortex (A1) in the rat. J. Neurosci. 27 (2007) 180-189.
    Ding Y, Casagrande VA. The distribution and morphology of LGN K pathway axons within the layers and CO blobs of owl monkey V1. Vis. Neurosci. 14 (1997) 691-704.
    Ding Y, Casagrande VA. Synaptic and neurochemical characterization of parallel pathways to the cytochrome oxidase blobs of primate visual cortex. J. Comp. Neurol. 391 (1998) 429-443.
    Doron NN, Ledoux JE, Semple MN. Redefining the tonotopic core of rat auditory cortex: physiological evidence for a posterior field. J. Comp. Neurol. 453 (2002) 345-360.
    Eggermont JJ. The role of sound in adult and developmental auditory cortical plasticity. Ear Hear. 29 (2008) 819-829.
    Ehret G, Fischer R. Neuronal activity and tonotopy in the auditory system visualized by c-fos gene expression. Brain Res. 567 (1991) 350-354.
    Eng LF, Ghirnikar RS, Lee YL. Glial fibrillary acidic protein: GFAP-thirty-one years (1969-2000). Neurochem. Res. 25 (2000) 1439-1451.
    Eriksson PS, Perfilieva E, Bjork-Eriksson T, Alborn AM, Nordborg C, Peterson DA, Gage FH. Neurogenesis in the adult human hippocampus. Nat. Med. 4 (1998)1313-1317.
    Fernandes MJDS, Dube C, Boyet S, Marescaux C, Nehlig A, Correlation Between Hypermetabolism and Neuronal Damage During Status Epilepticus Induced by Lithium and Pilocarpine in Immature and Adult Rats. J. Cereb. Blood Flow. Metab. 19 (1999) 195–209.
    Folkman J. Role of angiogenesis in tumor growth and metastasis. Semin. Oncol. 29 (2002) 15-8.
    Friauf E. Tonotopic order in the adult and developing auditory system of the rat as shown by c-fos immunocytochemistry. Eur. J. Neurosci. 4 (1992) 798-812.
    Friauf E. C-fos immunocytochemical evidence for acoustic pathway mapping in rats. Behav. Brain Res. 66 (1995) 217-224.
    Fuchs E, Gould E. Mini-review: in vivo neurogenesis in the adult brain: regulation and functional implications. Eur. J. Neurosci. 12 (2000) 2211-2214.
    Gabriele ML, Brunso-Bechtold JK, Henkel CK. Development of afferent patterns in the inferior colliculus of the rat: projection from the dorsal nucleus of the lateral lemniscus. J. Comp. Neurol. 416 (2000) 368-382.
    Gaese BH, Ostwald J. Temporal coding of amplitude and frequency modulation in rat auditory cortex. Eur. J. Neurosci. 7 (1995) 438-450.
    Gomes FC, Paulin D, Moura Neto V. Glial fibrillary acidic protein (GFAP): modulation by growth factors and its implication in astrocyte differentiation. Braz. J. Med. Biol. Res. 32 (1999) 619-631.
    Geny C, Naimi-Sadaoui S, Jeny R, Belkadi AM, Juliano SL, Peschanski M. Long-term delayed vascularization of human neural transplants to the rat brain. J. Neurosci. 14 (1994) 7553-7562.
    Gotoh J, Kuang TY, Nakao Y, Cohen DM, Melzer P, Itoh Y, Pak H, Pettigrew K, Sokoloff L. Regional differences in mechanisms of cerebral circulatory response to neuronal activation. Am. J. Physiol. Heart Circ. Physiol. 280 (2001) H821-829.
    Gould E, Reeves AJ, Graziano MS, Gross CG. Neurogenesis in the neocortex of adult primates. Science 286 (1999) 548-552.
    Gould E. Serotonin and hippocampal neurogenesis. Europsychopharmacology 21 (1999) 46S-51S.
    Greenough WT, Hwang HM, Gorman C. Evidence for active synapse formation or altered postsynaptic metabolism in visual cortex of rats reared in complex environments. Proc. Natl. Acad. Sci. USA 82 (1985) 4549-4552.
    Gross PM, Sposito NM, Pettersen SE, Panton DG, Fenstermacher JD. Topography of capillary density, glucose metabolism, and microvascular function within the rat inferior colliculus. J. Cereb. Blood Flow. Metab. 7 (1987) 154-160.
    Grossmann R, Stence N, Carr J, Fuller L, Waite M, Dailey ME. Juxtavascular microglia migrate along brain microvessels following activation during early postnatal development. Glia. 37 (2002) 229-240.
    Groszer M, Erickson R, Scripture-Adams DD, Dougherty JD, Le Belle J, Zack JA, Geschwind DH, Liu X, Kornblum HI, Wu H. PTEN negatively regulates neural stem cell self-renewal by modulating G0-G1 cell cycle entry. Proc. Natl. Acad. Sci. USA 103 (2006) 111-116.
    Gruner ML, Terhaag D. Multimodal early onset stimulation (MEOS) in rehabilitation after brain injury. Brain Inj. 14 (2000) 585-594.
    Guillemin GJ, Brew BJ. Microglia, macrophages, perivascular macrophages, and pericytes: a review of function and identification. J. Leukoc. Biol. 75 (2004) 388-397.
    Harrison RV, Harel N, Panesar J, Moun RJ. Blood capillary distribution correlates with hemodynamic-based functional imaging in cerebral cortex. Cereb. Cortex 12 (2002) 223-224.
    Heffner HE, Harrington IA. Tinnitus in hamsters following exposure to intense sound. Hear. Res. 170 (2002) 83-95.
    Hensch TK. Critical period regulation. Annu. Rev. Neurosci. 27 (2004) 549-579.
    Hernandez O, Espinosa N, Perez-Gonzalez D, Malmierca MS. The inferior colliculus of the rat: a quantitative analysis of monaural frequency response areas. Neurosci. 132 (2005) 203-217
    Huang CM, Fex J. Tonotopic organization in the inferior colliculus of the rat demonstrated with the 2-deoxyglucose method. Exp. Brain Res. 61 (1986) 506-512.
    Laskowski A, Schmidt W, Dinkel K, Martinez-Sanchez M, Reymann KG. bFGF and EGF modulate trauma-induced proliferation and neurogenesis in juvenile organotypic hippocampal slice cultures. Brain Res. 1037 (2005) 78-89.
    Illing RB. Maturation and plasticity of the central auditory system. Acta. Otolaryngol.Suppl. 552 (2004) 6-10.
    Ip NY, Li Y, Yancopoulos GD, Lindsay RM. Cultured hippocampal neurons show responses to BDNF, NT-3, and NT-4, but not NGF. J. Neurosci. 13 (1993) 3394-3405.
    Jansen M, de Witt Hamer PC, Witmer AN, Troost D, van Noorden CJ. Current perspectives on antiangiogenesis strategies in the treatment of malignant gliomas. Brain Res. Brain Res. Rev. 45 (2004) 143-63.
    Kandiel A, Chen S, Hillman DE. c-fos gene expression parallels auditory adaptation in the adult rat. Brain Res. 839 (1999) 292-297.
    Kay RH. Hearing of modulation in sounds. Physiol. Rev. 62 (1982) 894-975.
    Keilmann A, Herdegen T, The c-Fos transcription factor in the auditory pathway of the juvenile rat: effects of acoustic deprivation and repetitive stimulation. Brain Res. 753 (1997) 291-298.
    Kelly JB, Masterton B, Auditory sensitivity of the albino rat. J. Comp. Physiol. Psychol. 91 (1977) 930-936.
    Kempermann G, Kuhn HG, Gage FH. More hippocampal neurons in adult mice living in an enriched environment. Nature 386 (1997) 493-495.
    Kempermann G, Kuhn HG, Gage FH. Experience-induced neurogenesis in the senescent dentate gyrus. J. Neurosci. 18 (1998) 3206-3212.
    Khananashvili YA, Demidova AA. Dynamics of the development of microvascular reactions in the projection zones of the somatosensory cortex of the brain in rats. Neurosci. Behav. Physiol. 32 (2002) 435-442.
    Kiang NYS. Stimulus representation in the discharge patterns of auditory neurons. In: Tower DB (Ed) The nervous system Vol 3. Human communication and its disorders. Raven Press, New York, 1975, 81-96.
    Klein B, Kuschinsky W, Schrock H, Vetterlein F. Interdependency of local capillary density, blood flow, and metabolism in rat brains. Am. J. Physiol. 251 (1986) H1333-1340.
    Klinke R, Kral A, Heid S, Tillein J, Hartmann R. Recruitment of the auditory cortex in congenitally deaf cats by long-term cochlear electrostimulation. Science 285 (1999) 1729-1733.
    Kovacs KJ. c-Fos as a transcription factor: a stressful (re)view from a functional map. Neurochem. Int. 33 (1998) 287-297.
    Kuo CJ, Farnebo F, Yu EY, Christofferson R, Swearingen RA, Carter R, von Recum HA, Yuan J, Kamihara J, Flynn E, DAmato R, Folkman J, Mulligan RC. Comparative evaluation of the antitumor activity of antiangiogenic proteins delivered by gene transfer. Proc. Natl. Acad. Sci USA 98 (2001) 4605-4610.
    Larsen KB, Laursen H, Graem N, Samuelsen GB, Bogdanovic N, Pakkenberg B. Reduced cell number in the neocortical part of the human fetal brain in Down syndrome. Ann. Anat. 190 (2008) 421-427.
    Liu PC, Yang ZJ, Qiu MH, Zhang LM, Sun FY. Induction of CRMP-4 in striatum of adult rat after transient brain ischemia. Acta. Pharmacol. Sin. 24 (2003) 1205-1211.
    Loftus WC, Malmierca MS, Bishop DC, Oliver DL. The cytoarchitecture of the inferior colliculus revisited: a common organization of the lateral cortex in rat and cat. Neurosci. 154 (2008) 196-205.
    Lou HC, Edvinsson L, MacKenzie ET. The concept of coupling blood flow to brain function: revision required? Ann. Neurol. 22 (1987) 289-297.
    Lu HP, Chen ST, Poon PW. Nuclear size of c-Fos expression at the auditory brainstem is related to the time-varying nature of the acoustic stimuli. Neurosci. Lett. 451 (2009) 139-143.
    Luo L, Ryan AF, Saint Marie RL. Cochlear ablation alters acoustically induced c-fos mRNA expression in the adult rat auditory brainstem. J. Comp. Neurol. 404 (1999) 271-283.
    Malmierca MS. The structure and physiology of the rat auditory system: an overview. Int. Rev. Neurobiol. 56 (2003) 147-211.
    Malmierca MS. The inferior colliculus: a center for convergence of ascending and descending auditory information. Neuroembryol. Aging 3 (2004) 215-229.
    Malmierca MS, Hernandez O, Rees A. Intercollicular commissural projections modulate neuronal responses in the inferior colliculus. Eur. J. Neurosci. 21 (2005) 2701-2710.
    Malmierca MS, Izquierdo MA, Cristaudo S, Hernandez O, Perez-Gonzalez D, Covey E, Oliver DL. A discontinuous tonotopic organization in the inferior colliculus of the rat. J. Neurosci. 28 (2008) 4767-4776.
    Malmierca MS, Saint Marie RL, Merchan MA, Oliver DL. Laminar inputs from dorsal cochlear nucleus and ventral cochlear nucleus to the central nucleus of the inferior colliculus: two patterns of convergence. Neurosci. 136 (2005) 883-894.
    Markham JA, Greenough WT. Experience-driven brain plasticity: beyond the synapse. Neuron Glia Biol. 1 (2004) 351-363.
    Marti HJH, Bernaudin M, Bellail A, Schoch H, Euler M, Petit E, Risau W. Hypoxia-induced vascular endothelial growth factor expression precedes neovascularization after cerebral ischemia. Am. J. Pathol. 156 (2000) 965-976.
    Matsuura T, Kanno I. Quantitative and temporal relationship between local cerebral blood flow and neuronal activation induced by somatosensory stimulation in rats. Neurosci. Res. 40 (2001) 281-290.
    McMullen NT, Glaser EM. Auditory cortical responses to neonatal deafening: pyramidal neuron spine loss without changes in growth or orientation. Exp. Brain Res. 72 (1998) 195-200.
    Meitzen J, Thompson CK. Seasonal-like growth and regression of the avian song control system: neural and behavioral plasticity in adult male Gambel's white-crowned sparrows. Gen. Comp. Endocrinol. 157 (2008) 259-265.
    Menzel RR, Barth DS. Multisensory and secondary somatosensory cortex in the rat. Cereb. Cortex 15 (2005) 1690-1696.
    Ming G, Song H. Adult neurogenesis in the mammalian central nervous system. Ann. Rev. Neurosci. 28 (2005) 223-250.
    Niparko JK, Finger PA. Cochlear nucleus cell size changes in the dalmatian: model of congenital deafness. Otolaryngol. Head Neck Surg. 117 (1997) 229-235.
    Nottebohm F. The road we travelled: discovery, choreography, and significance of brain replaceable neurons. Ann. N.Y. Acad. Sci. 1016 (2004) 628–658.
    Ogunshola OO, Stewart WB, Mihalcik V, Solli T, Madri JA, Ment LR. Neuronal VEGF expression correlates with angiogenesis in postnatal developing rat brain. Dev. Brain Res. 119 (2000) 139-153.
    Oliver DL, Morest DK. The central nucleus of the inferior colliculus in the cat. J. Comp. Neurol. 222 (1984) 237-264.
    Oliver DL, Huerta MF. Inferior and superior colliculi, In: Handbook of Auditory Research. The mammalian auditory pathways: Neuroanatomy, D.B. Webster, A.N. Popper, R.R. Fay (Eds.), Vol. 1 Springer Verlag, New York, 1992, 168-221.
    Pathak AP, Schmainda KM, Ward BD, Linderman JR, Rebro KJ, Greene AS. MR-derived cerebral blood volume maps: issues regarding histological validation and assessment of tumor angiogenesis. Magn. Reson. Med. 46 (2001) 735-747.
    Paxino G, Watson C (Eds.). The rat brain in stereotaxic coordinates. Academic Press, New York, 1998, 280 pp.
    Pellerin L, Magistretti PJ. Neuroenergetics: calling upon astrocytes to satisfy hungry neurons. Neuroscientist 10 (2004) 53-62.
    Perez-Gonzalez D, Malmierca MS, Covey E. Novelty detector neurons in the mammalian auditory midbrain. Eur. J. Neurosci. 22 (2005) 2879-2885.
    Perez-Gonzalez D, Malmierca MS, Moore JM, Hernandez O, Covey E. Duration selective neurons in the inferior colliculus of the rat: topographic distribution and relation of duration sensitivity to other response properties. J. Neurophysiol. 95 (2006) 823-836.
    Pierri JN, Volk CLE, Auh S, Sampson A, Lewis DA. Decreased somal size of deep layer 3 pyramidal neurons in the prefrontal cortex of subjects with schizophrenia. Arch. Gen. Psychiatry 58 (2001) 466-473.
    Polley DB, Read HL, Storace DA, Merzenich MM. Multiparametric auditory receptive field organization across five cortical fields in the albino rat. J. Neurophysiol. 97 (2007) 3621-3638.
    Poon PW, Chen XY, Hwang JC. Altered sensitivities of auditory neurons in the rat midbrain following early postnatal exposure to patterned sounds. Brain Res. 524 (1990) 327-330.
    Poon PWF, Chen X, Hwang JC. Basic determinants for FM responses in the inferior colliculus of rats. Exp. Brain Res. 83 (1991) 598-606.
    Poon PWF, Chen X, Cheung YM. Differences in FM responses correlate with morphology of neurons in the rat inferior colliculus. Exp. Brain Res. 91 (1992) 94-104.
    Poon PW, Chen X. Postnatal exposure to tones alters the tuning characteristics of inferior collicular neurons in the rat. Brain Res. 585 (1992) 391-394.
    Poon PWF, Chiu TW. Similarities of FM and AM receptive space of single units at the auditory midbrain. Biosystems 58 (2000) 229-237.
    Poon PWF, Yu PP. Spectro-temporal receptive fields of midbrain auditory neurons in the rat obtained with frequency modulated stimulation. Neurosci. Lett. 289 (2000) 9-12.
    Qian Y, Wu M, Jen PH. Tracing the auditory pathways to electrophysiologically characterized neurons with HRP and Fos double-labeling technique. Brain Res. 731 (1996) 241-245.
    Redd EE, Pongstaporn T, Ryugo DK. The effects of congenital deafness on auditory nerve synapses and globular bushy cells in cats. Hear. Res. 147 (2000) 160-174.
    Rees A, Malmierca MS. Processing of dynamic spectral properties of sounds. Int. Rev. Neurobiol. 70 (2005) 299-330.
    Rees A, Moller AR. Responses of neurons in the inferior colliculus of the rat to AM and FM tones. Hear. Res. 10 (1983) 301-330.
    Risau W. Mechanisms of angiogenesis. Nature 386 (1997) 671-674.
    Rockel AJ, Jones EG. The neuronal organization of the inferior colliculus of the adult cat. I. The central nucleus. J. Comp. Neurol. 147 (1973) 11-60.
    Romand R. Modification of tonotopic representation in the auditory system during development. Prog. Neurobiol. 51 (1997) 1-17.
    Rosell-Novel A, Montaner J, Alvarez-Sabin J. Angiogenesis in human cerebral ischemia. Rev. Neurol. 38 (2004) 1076-1082.
    Rosenstein JM, Mani N, Silverman WF, Krum JM. Patterns of brain angiogenesis after vascular endothelial growth factor administration in vitro and in vivo. Proc. Natl .Acad. Sci. USA 95 (1998) 7086-7091.
    Rouiller EM, Wan XS, Moret V, Liang F. Mapping of c-fos expression elicited by pure tones stimulation in the auditory pathways of the rat, with emphasis on the cochlear nucleus. Neurosci. Lett. 144 (1992) 19-24.
    Ryan AF, Furlow Z, Woolf NK, Keithley EM. The spatial representation of frequency in the rat dorsal cochlear nucleus and inferior colliculus. Hear. Res. 36 (1988) 181-189.
    Ryugo DK, Parks TN. Primary innervation of the avian and mammalian cochlear nucleus. Brain Res. Bull. 60 (2003) 435-456.
    Saada AA, Niparko JK, Ryugo DK. Morphological changes in the cochlear nucleus of congenitally deaf white cats. Brain Res. 736 (1996) 315-328.
    Sachdev RN, Champney GC, Lee H, Price RR, Pickens DR, Morgan VL, Stefansic JD, Melzer P, Ebner FF. Experimental model for functional magnetic resonance imaging of somatic sensory cortex in the unanesthetized rat. Neuroimage 19 (2003) 742-750.
    Salhia B, Angelov L, Roncari L, Wu X, Shannon P, Guha A. Expression of vascular endothelial growth factor by reactive astrocytes and associated neoangiogenesis. Brain Res. 10 (2000) 87-97.
    Sally SL, Kelly JB. Organization of auditory cortex in the albino rat: sound frequency. J. Neurophysiol. 59 (1988) 1627-1638.
    Saint Marie RL, Luo L, Ryan AF. Spatial representation of frequency in the rat dorsal nucleus of the lateral lemniscus as revealed by acoustically induced c-fos mRNA expression. Hear. Res. 128 (1999) 70-74.
    Saint Marie RL, Luo L, Ryan AF. Effects of stimulus frequency and intensity on c-fos mRNA expression in the adult rat auditory brainstem. J. Comp. Neurol. 404 (1999) 258-270.
    Sanes DH, Constantine-Paton M. Altered activity patterns during development reduce neural tuning. Science 221 (1983) 1183-1185.
    Sato K, Houtani T, Ueyama T, Ikeda M, Yamashita T, Kumazawa T, Sugimoto T. Identification of rat brainstem sites with neuronal Fos protein induced by acoustic stimulation with pure tones. Acta. Otolaryngol. Suppl. 500 (1993) 18-22.
    Scheich H, Zuschratter W. Mapping of stimulus features and meaning in gerbil auditory cortex with 2-deoxyglucose and c-Fos antibodies. Behav. Brain Res. 66 (1995) 195-205.
    Schmidt EE, Schibler U. Cell size regulation, a mechanism that controls cellular RNA accumulation: consequences on regulation of the ubiquitous transcription factors Oct1 and NF-Y and the liver-enriched transcription factor DBP. J. Cell Biol. 128 (1995) 467-483.
    Sharp FR, Sagar SM, Swanson RA. Metabolic mapping with cellular resolution: c-fos vs. 2-deoxyglucose. Crit. Rev. Neurobiol. 7 (1993) 205-228.
    Sims D, Duchek P, Baum B, PDGF/VEGF signaling controls cell size in Drosophila. Genome Biol. 10 (2009) R20 (doi:10.1186/gb-2009-10-2-r20).
    Sirevaag AM, Greenough WT. Differential rearing effects on rat visual cortex synapses. III. Neuronal and glial nuclei, boutons, dendrites, and capillaries. Brain Res. 424 (1987) 320-332.
    Stark AK, Toft MH, Pakkenberg H, Fabricius K, Eriksen N, Pelvig DP, Moller M, Pakkenberg B. The effect of age and gender on the volume and size distribution of neocortical neurons. Neuroscience 150 (2007) 121-130.
    Stiver SI. Angiogenesis and its role in the behavior of astrocytic brain tumors. Front. Biosci. 9 (2004) 3105-3123.
    Stiver SI, Tan X, Brown LF, Hedley-Whyte ET, Dvorak HF. VEGF-A angiogenesis induces a stable neovasculature in adult murine brain. J. Neuropathol. Exp. Neurol. 63 (2004) 841-855.
    Sun W, Li N, He S. Large-scale morphological survey of mouse retinal ganglion cells. J. Comp. Neurol. 451 (2002) 115-126.
    Taguchi A, Soma T, Tanaka H, Kanda T, Nishimura H, Yoshikawa H, Tsukamoto Y, Iso H, Fujimori Y, Stern DM, Naritomi H, Matsuyama T. Administration of CD34+ cells after stroke enhances neurogenesis via angiogenesis in a mouse model. J. Clin. Invest. 114 (2004) 312-314.
    Talcott JB, Witton C, McClean M, Hansen PC, Rees A, Green GG, Stein JF. Can sensitivity to auditory frequency modulation predict children's phonological and reading skills? Neuroreport 10 (1999) 2045-2050.
    Tao YX, Zhao ZQ. Ultrastructure of Fos-labeled neurons relating to nociceptive primary afferent and substance P terminals in rat spinal superficial laminae. Neuropeptides 4 (1997) 327-332.
    Taupin P. BrdU immunohistochemistry for studying adult neurogenesis: paradigms, pitfalls, limitations, and validation. Brain Res. Rev. 53 (2007) 198-214.
    Tsai AG, Johnson PC, Intaglietta M. Oxygen gradients in the microcirculation. Physiol. Rev. 83 (2003) 933-963.
    Vanzetta I, Grinvald A. Increased cortical oxidative metabolism due to sensory stimulation: implications for functional brain imaging. Science 286 (1999) 1555-1558.
    van Praag H, Kempermann G, Gage FH. Running increases cell proliferation and neurogenesis in the adult mouse dentate gyrus. Nat. Neurosci. 2 (1999) 266-270.
    Vischer MW, Hausler R, Rouiller EM. Distribution of Fos-like immunoreactivity in the auditory pathway of the Sprague-Dawley rat elicited by cochlear electrical stimulation. Neurosci. Res. 19 (1994) 175-185.
    Weber B, Burger C, Wyss MT, Schulthess Scheffold GK, Buck FA. Optical imaging of the spatiotemporal dynamics of cerebral blood flow and oxidative metabolism in the rat barrel cortex. Eur. J. Neurosci. 20 (2004) 2664-2670.
    Weidner N. Tumour vascularity and proliferation: clear evidence of a close relationship. J. Pathol. 189 (1999) 309-318.
    Wei L, Erinjeri JP, Rovainen CM, Woolsey TA. Collateral growth and angiogenesis around cortical stroke. Stroke 32 (2001) 2179-2184.
    Wu JL, Chiu TW, Poon PWF. Differential changes in Fos-immunoreactivity at the auditory brainstem after chronic injections of salicylate in rats. Hear. Res. 176 (2003) 80-93.
    Xu JF, Poon PWF, Chen XY, Chung SN. Computer-based three dimensional reconstruction of nuclear subdivisions in the inferior colliculus. Comput. Engin. Applicat. (Chinese) 6 (1990) 7-10.
    Yan J. Canadian Association of Neuroscience Review: development and plasticity of the auditory cortex. Can. J. Neurol. Sci. 30 (2003) 189-200.
    Yen A, Pardee AB. Role of nuclear size in cell growth initiation. Science 204 (1979) 1315-1317.
    Yu X, Sanes DH, Aristizabal O, Wadghiri YZ, Turnbull DH. Large-scale reorganization of the tonotopic map in mouse auditory midbrain revealed by MRI. Proc. Natl. Acad. Sci. USA 104 (2007) 12193-12198.
    Zeller K, Vogel J, Kuschinsky W. Postnatal distribution of Glut1 glucose transporter and relative capillary density in blood-brain barrier structures and circumventricular organs during development. Brain Res. Dev. Brain Res. 91 (1996) 200-208.
    Zhang LI, Bao S, Merzenich MM. Persistent and specific influences of early acoustic environments on primary auditory cortex. Nat. Neurosci. 4 (2001) 1123-1130.
    Zhang LI, Bao S, Merzenich MM. Disruption of primary auditory cortex by synchronous auditory inputs during a critical period. Proc. Natl. Acad. Sci. USA 99 (2002) 2309-2314.
    Zhang JS, Haenggeli CA, Tempini A, Vischer MW, Moret V, Rouiller EM. Electrically induced fos-like immunoreactivity in the auditory pathway of the rat: effects of survival time, duration, and intensity of stimulation. Brain Res. Bull. 39 (1996) 75-82.
    Zhang JS, Vischer MW, Moret V, Roulin C, Rouiller EM. Antibody-dependent Fos-like immunoreactivity (FLI) in the auditory pathway of the rat in response to electric stimulation of the cochlea. J. Hirnforsch. 39 (1998) 21-35.
    Zhou X, Merzenich MM. Developmentally degraded cortical temporal processing restored by training. Nat. Neurosci. 12 (2009) 26-28.
    Zuschratter W, Gass P, Herdegen T, Scheich H. Comparison of frequency-specific c-Fos expression and fluoro-2-deoxyglucose uptake in auditory cortex of gerbils (Meriones unguiculatus). Eur. J. Neurosci. 7 (1995) 1614-1626.

    下載圖示 校內:2011-08-06公開
    校外:2014-08-06公開
    QR CODE