| 研究生: |
廖雯婕 Liao, Wen-Jye |
|---|---|
| 論文名稱: |
老舊造紙廠房濕熱作業環境的通風換氣實務設計與探討 Practical Design and Discussion on Ventilation in the Humid and Hot Working Environment of Old Paper Mills |
| 指導教授: |
潘振宇
Pan, Chen-Yu |
| 學位類別: |
碩士 Master |
| 系所名稱: |
規劃與設計學院 - 建築學系 Department of Architecture |
| 論文出版年: | 2024 |
| 畢業學年度: | 112 |
| 語文別: | 中文 |
| 論文頁數: | 133 |
| 中文關鍵詞: | 造紙廠房 、機械換氣 、建築設備設計 、實務規劃 、既有老舊廠房 |
| 外文關鍵詞: | Paper Mills, Mechanical Ventilation, Building Equipment Design, Practical Planning, Existing Old Factory Buildings |
| ORCID: | 0000-0002-0178-8114 |
| 相關次數: | 點閱:45 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著極端氣候與都市熱島效應的日益嚴重,台灣地區的工業廠房正面臨著室內環境方面的挑戰,不僅影響員工的舒適度甚至降低了工作效率。並且,老舊的工業廠房由於早期設計和技術的能量不足,使得工作環境常常面臨較差需要改善的情況。為此,本研究旨在通過對老舊廠房進行詳細調查和評估,探討改善現有工作環境的方法。
研究首先分析了工廠的作業流程、當前環境狀況以及改善需求的限制,並根據這些條件提出了一系列改善環境的通風設備設計方案。為確保設計方案的合適性,本研究彙整了各種專業理論知識以支持整個設計過程,並進一步的利用評估指標與軟體模擬來分析改善效益。同時,本研究建立在理論與實務結合的基礎上,因此在設計過程中,需要考慮到一些要求限制,像是改善方案必須與紙機正常運行兼容,並確保放置的機械設備系統不影響日常工作動線等。透過持續向廠方報告改善方案進度,在討論中根據設計內容提出釋疑並同時對其他可行的改善方案提出評估,盡可能在兼顧成本效益的情況下,提出根據實際情況不斷調整的方案。
實地調查發現,由於濕度的影響,濕部區域的員工最高可能會感受到55℃的體感溫度,因此這一區域成為需重點改善的對象。在不影響紙機生產線運行的前提下,本研究選擇在室內外平台上安裝離心式風機,主要目標是抽走濕部區排放的濕氣,並進行後續的風管路徑設計。總風量約為150萬(m3/h),並採用分期施工的策略逐步檢討環境改善的效果,第一、二、三階段分別設計了55萬、34萬和67萬(m3/h)的風量。利用換氣量的比例來評估完工後環境改善效果,發現夏季由於室外溫度較高,雖然僅能有效降低濕度,但體感溫度仍可降至約43.6℃。而通過CFD模擬換氣結果,發現工作區域內的溫度顯著降低,儘管高空區域仍有熱濕氣聚集的現象。
因此,建議後續在配合廠房的施工期程中,應該紀錄實際情況並在每期施工結束後進行實驗量測,以確保改善效果符合預期。另外,工業廠房的設計與操作在建築設計教育訓練中相對缺乏相應的培訓,尤其是建築設備的教育更是少見。因此,期望未來在設計規劃上,本研究能夠做為建築教育的參考範例,推動為數眾多的老舊工業廠房納入建築設計與機電整合教學中,以促進實踐應用。
With the increasing severity of extreme weather and urban heat island effects, industrial plants in Taiwan face significant indoor environmental challenges, affecting employee comfort and work efficiency. Older plants often have suboptimal conditions due to insufficient early design and technology. This study aims to improve these conditions through detailed investigations and assessments.
Initially, the study analyzes the factory's operational processes, current environmental conditions, and improvement constraints. Based on this analysis, a series of ventilation equipment design proposals were developed. These proposals are supported by professional theories and evaluated using metrics and software simulations. Practical considerations include ensuring compatibility with normal paper machine operations and non-disruptive equipment placement. Continuous progress reports and evaluations of other feasible improvement plans are conducted to ensure cost-effective solutions.
Field investigations revealed that due to humidity, employees in the wet section could experience temperatures up to 55℃, making this area a priority for improvement. Without disrupting the production line, the study installed centrifugal fans on indoor and outdoor platforms to extract humidity, followed by designing air duct pathways. The total air volume was about 1.5 million cubic meters per hour (m³/h), divided into three phases: 550,000, 340,000, and 670,000 m³/h. Evaluations showed that in summer, humidity reduction could lower the perceived temperature to about 43.6℃. CFD simulations indicated significant temperature reductions in work areas, although high-altitude areas still had heat and humidity accumulation.
Subsequent construction phases should record actual conditions and conduct measurements to ensure expected improvements. This study can serve as a reference for integrating building services into architectural education, promoting practical applications in old industrial plants.
Huda, L. N. (2018). The thermal environment effect on the comfort of electronic factory worker. IOP conference series: earth and environmental science,
ISO-15265:2004. (2004). https://www.iso.org/standard/26129.html
JIS A 4009:2017 空気調和及び換気設備用ダクトの構成部材. (2017).
Kang, J.-H., & Lee, S.-J. (2008). Improvement of natural ventilation in a large factory building using a louver ventilator. Building and Environment, 43(12), 2132-2141.
Ng, C., Leman, A., & Asmuin, N. (2012). A study of the effectiveness of local exhaust ventilation (LEV) using computational fluid dynamics (CFD) approach. Journal of Occupational Safety and Health, 9(3).
Paper machine room ventilation guidelines. (2003).
Shi, X., Zhu, N., & Zheng, G. (2013). The combined effect of temperature, relative humidity and work intensity on human strain in hot and humid environments. Building and Environment, 69, 72-80.
Wei, G., Chen, B., Lai, D., & Chen, Q. (2020). An improved displacement ventilation system for a machining plant. Atmospheric Environment, 228, 117419.
Wijewardane, S., & Jayasinghe, M. (2008). Thermal comfort temperature range for factory workers in warm humid tropical climates. Renewable Energy, 33(9), 2057-2063.
Ye, X., Chen, H., & Lian, Z. (2010). Thermal Environment and Productivity in the Factory. Ashrae Transactions, 116(1).
井上宇市, 賴秋勳, & 林麗娟. (1996). 風管設計施工便覽. 中華水電空調雜誌社.
王順志、莊侑哲. (2015). 濕熱作業環境通風控制案例探討 (勞動部勞動及職業安全衛生研究所, Ed.).
林彥菁. (2021). 廠房智慧通風散熱設計及應用探討 中州科技大學]. https://hdl.handle.net/11296/sgpu92
徐振凱、鄭儀誠. (2021). 先進控制技術應用在造紙生產製程. 機械工業雜誌(數位製造與檢測技術專輯). https://www.automan.tw/magazine/magazineContent.aspx?id=4182
造紙業節能減碳技術與案例彙編. (2017). 經濟部中小企業處.
黃榮芳. (2023). 工業通風-局部排氣裝置設置.
廖秋源. (2006). 一般場所空調/換氣工程規劃相關技術之研究. 順光股份有限公司.
蕭森玉. (2018). 工業通風與換氣. 新學林
鍾基強. (2003). 工業通風設計概要. 全華科技.
校內:2029-07-16公開