研究生: |
李昌曄 Li, Chang-Ye |
---|---|
論文名稱: |
外差及光譜偏光儀於光學旋光性與圓二色性之量測 Heterodyne Polarimetry and Spectroscopic Polarimetry for Measuring the Optical Rotatory Dispersion and Circular Dichroism of Anisotropic Optical Media |
指導教授: |
羅裕龍
Lo, Yu-Lung |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
論文出版年: | 2012 |
畢業學年度: | 100 |
語文別: | 英文 |
論文頁數: | 98 |
中文關鍵詞: | 光學旋轉角 、圓二色性 、外差干涉儀 、史托克參數 、傅立葉轉換光譜儀 |
外文關鍵詞: | optical rotation angle, circular dichroism, heterodyne interferometer, Stokes parameters, Fourier transform spectrometer |
相關次數: | 點閱:164 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究主要目的在於開發新的共光路光學外差偏光儀來量測一對掌性物質之光學旋轉角(CB)與圓二色性(CD)橢圓率之資訊。藉由以此外差干涉架構中所量測到的光強訊號,經由適當的電子訊號處理來同時求得出我們所要的CB與CD之資訊。經由本系統所得到的兩個光學參數CB和CD是彼此互相不影響的,因此能提升量測的精度,而此方法所量測到的光學參數還能達到全域的範圍。利用本實驗所提出的方法分別測試不同的樣品,單純具有CB性質、單純具有CD性質和單純具有CB與CD性質的樣品。實驗結果顯示量測單純具有CB性質的葡萄糖溶液(De-ionized water containing D-glucose)的標準偏差為1.28×10-3。而同時量測到的光學旋轉角(CB)與圓二色性(CD)的標準偏差分別為3.07×10-3度與9.3×10-4。最後,此量測系統可能造成誤差的原因,為光學元件旋轉所造成的誤差以及元件本身的不完美,對量測的結果都會有所影響。另外電光調變器些微的角度誤差,經由此訊號處理的過程可以被濾除。
此外,本研究也提出藉由傅立葉轉換光譜儀來量測光譜史托克參數,可用於分析蛋白質的結構。此量測技術利用旋轉四種角度的四分之一波片與偏振片,取得的四張干涉圖經由適當的運算處理,搭配史托克參數和傅立葉轉換,成功的解出包含在干涉圖裡的資訊史托克光譜圖。最後模擬的結果顯示,利用此量測方法可成功的量測出所需的參數,並顯示出光譜偏光儀的可行性。未來這也將會是我們致力於發展之方向。
A method is proposed for measuring the circular birefringence (CB) and circular dichroism (CD) properties of anisotropic optical samples using a heterodyne polarimeter and an electronic signal processing scheme. Importantly, the CB and CD properties of the sample are decoupled in the analytical model, and thus the accuracy of the measurement results is improved. Furthermore, the proposed method enables the CB and CD properties of the sample to be measured over the full range. The validity of the proposed method is demonstrated by measuring the optical rotation angle and circular diattenuation of pure CB and CD samples and a composite sample with both CB and CD properties. The standard deviations of the optical rotation angle and circular dichroism are found to be 3.07×10-3 degrees and 9.3×10-4 for a hybrid CD/CB sample, respectively. Also, the D-glucose experimental results have showed that the standard deviation is found to be 9.3×10-4 degree.
In addition, we also propose a scheme to measure the spectral of Stokes parameter by Fourier transform spectrometer for the analysis structure of protein (i.e. CD sample). This measuring technique is based on Fourier transform and Stokes parameters where the Stokes vector information is modulated onto the spectrum via four interferograms. These carrier frequencies can be observed in the interferogram taken from a Fourier transform spectrometer, thereby providing a more direct means of acquiring the spectropolarimetric data.
Azzam R. M. A., “Propagation of partially polarized light through anisotropic media with or without depolarization: A differential 4 × 4 matrix calculus,” J. Opt. Soc. Am., Vol. 68, pp. 1756-1767, (1978)
Bahar E., “Detection and identification of optical activity using polarimetry-applications to biophotonics, biomedicine and biochemistry,” J. Biophoton. Vol. 1, No. 3, pp. 230-237, (2008).
Claborn K., Faucher E. P., Kurimoto M., Kaminsky W., and Kahr B., “Circular Dichroism imaging microscopy: Application to enantiomorphous twinning in biaxial crystals of 1, 8-dihydroxyanthraquinone,” J. AM. CHEM. SOC. Vol. 125, No 48, pp. 14825-14831, (2003).
Gazalet, M. G., Ravez, M., Haine, F., Bruneel, C., and Bridoux, E., “Acousto-optic low frequency shifter,” Appl. Opt., Vol. 33, 1293-1298 (1994).
Gelmini, E., Minomi, U., and Docchio, F., “Tunable, double-wavelength heterodyne detection interferometer for absolute distance measurement,” Opt. Lett., Vol. 19, 213-215 (1994).
Goldstein, D., Polarized Light, Marcel Dekker, Inc. 2003
Haus, H. A., Waves and fields in optoelectronics, Prientice-Hall, Inc., Englewood Cliffs, New Jersey, Ch. 12 (1984).
Hariharan, P., Optical interfeometry, Academic Press (1983).
Hecht E., Optics, Fourth ed. USA: Addison Wesley, 2002.
Hecht, Optics, Addision-Wesley, 4th ed., Ch. 7, 282-286 (1998).
Hecht, Optics, Addision-Wesley, 4th ed., Ch. 8, 336-344 (1998).
Hou W. and Wilkening G., “Investigation and compensation of the nonlinearity of heterodyne interferometers,” Precis. Eng. Vol. 14, No. 2, pp. 91-98, (1992)
Hu H. Z., “Polarization heterodyne interferometry using a simple rotating analyzer. 1: Theory and error analysis,”Applied Optics, Vol. 22, No 13, pp. 2052-2056, (1983).
Kaminsky W., Geday M. A., Cedres J. H., and Kahr B., “Optical rotator and circular dichroic scattering,” J. Phys. Chem. Vol. 107, No 16, pp. 2800-2807, (2003).
Kaminsky W., Claborn K., and Kahr B., “Polarimetric imaging of crystals,” Chem. Soc. Rev., Vol. 33, issue 8, pp. 514-525, (2004).
Kauppinen J., and Partanen J., Fourier Transforms in Spectroscopy, Wiley-vch (2001).
Kelly S. M., Jess T. J., and Price N. C., “How to study proteins by circular dichroism,” Bioch. Bioph. Acta, Vol. 1751, issue 2, pp. 119-139, (2005).
Kelly S. M., Jess T. J., and Price N. C., "How to study proteins by circular dichroism," Biochimica et Biophysica Acta (BBA) - Proteins & Proteomics, Vol. 1751(2), pp. 119-139,( 2005).
Kemp, J. C., “Piezo-optical birefringence modulators: new use for a long known effect,” J. Opt. Sci. Am., Vol. 59, 950-954 (1969).
Kliger D. S., Lewis J. W., and Randall C. E., Polarized light in optics and spectroscopy, Academic Press, Inc., (1990)
Kothiyal, M. P. and Delisle, C., “Optical frequency shifter for heterodyne interferometry using coumterrotating wave plates,” Opt. Lett., Vol. 9, 319-321 (1984).
Lo Y.L. and Yu T.C., ”Polarimetric Glucose Sensor Using a Liquid-Crystal Polarization Modulator Driven by a Sinusoidal Signal,” Optics Communications, Vol. 259, No. 1, pp. 40-48, (2006).
Malik B. H. and Cote G. L., “Real-time, closed-loop dual-wavelength optical polarimetry for glucose monitoring,” J. Biomed. Opt., Vol. 15(1), No 017002, pp. 1-6, (2010).
Michalewicz Z., “Genetic Algorithm + Data structure = Evolution Programs,”Springer-Verlag, New York (1994)
Mitsui T. and Sakurai K., “Precise measurement of the refractive index and optical rotatory power of a suspension by a delayed optical heterodyne technique,” Applied Optics, Vol. 35, No 13, pp. 2253-2258, (1996).
Muller T., Wiberg K. B., and Vaccaro P. H., “A new scheme for probing circular birefringence and circular dichroism in the gas phase,” J. Phys. Chem. A, Vol. 104, No. 25, pp. 5959-5968, (2000).
Nakanishi K., Berova N., and Woody R. W., Circular dichroism: principles and applications, Wiley-VCH (1994).
Nunes J. A., Tong W. G., Chandler D. W., Rahn L. A., “Circular Dichroism Spectroscopy by Four-Wave Mixing Using Polarization Grating-Induced Thermal Gratings,”J. Phys. Chem. A, Vol. 101, No. 18, pp. 3279-3283, (1997).
Pham T.T.H., Lo Y. L., and Chen P. C., “Design of polarization-insensitive optical fiber probe based on effective optical parameters,”IEEE/OSA J. Light. Technol. Vol. 29, Issue 8, pp. 1127-1135 (2011).
Rosenbluth A. E. and Bobroff N., “Optical sources of nonlinearity in heterodyne interferometers,”Precis. Eng. Vol. 12, No. 1, pp. 7-11, (1990)
Smith B. C., Findamentals of Fourier Transform Infrared Spectroscopy, CRC Press, Inc., (1996)
Swords N. A. and Wallace B. A., “Circular-dichroism analyses of membrane proteins: examination of environmental effects on bacteriorhodopsin spectra,” Biochem. J., Vol. 289, pp. 215-219, (1993)
Suzuki, T. and Hioki, R., “Translation of light frequency by moving grating,” J. Opt. Soc. Am., Vol. 57, 1551(1967).
Suits, J. C., “Magneto-optical rotation and ellipticity measurements with a spinning analyzer,” Rev. Sci. Instrum., Vol. 42, 19-22 (1971).
Schubert Mathias, “Polarization-dependent optical parameters of arbitrarily anisotropic homogeneous layered systems,” Phys. Rev. B., Vol.53, 4265 (1996)
Takasaki, H., Umeda, N., and Tsukiji, M., “Stabilized transverse Zeeman laser as a new light source for optical measurement,” Appl. Opt., Vol. 19, 435-441(1980).
Velluz L., Legrand M., and Grosjean M., “Optical Circular Dichroism,”Academic (1965).
Wan Q., Cote G. L., and Dixon J. B., “Dual-wavelength polarimetry for monitoring glucose in the presence of varying birefringence,” J. Biomed. Opt., Vol. 10(2), No 024029, pp 1-8, (2005).
Wieglhofer W. S. and Lakhtakia A., Introduction to complex mediums for optics and electromagnectics Vol. PM123. Bellingham, WA, USA: SPIE Press, (2003).
Wickramasingle, H. K., Laser heterodyne probes, Optical Metrology, NATO ASI series (1987).
Yariv, A. and Yeh, P., Optical waves in crystal, John Wiley&Sons, Inc., Ch. 4 (1984).
Zsila F., Molnar P., Deli J., and Lockwood S. F., “Circular dichroism and absorption spectroscopic data reveal binding of the natural cis-carotenoid bixin to human α-acid glycoprotein,” Bioorganic Chem., Vol. 33, pp. 298-309, (2005).
許正治,使用外差干涉儀測量光學常數之研究,國立交通大學光電工程研究所碩士論文,2003.
鄭諭燦,共路徑外差干涉儀順序量測雙折射晶體光學參數之設計與研究,國立成功大學機械工程研究所碩士論文,2005
池弘偉,全場式光學外差干涉儀應用於量測雙折射晶體光學參數之設計與研究,國立成功大學機械工程研究所碩士論文,2005