| 研究生: |
杜婉綺 Tu, Wan-Chi |
|---|---|
| 論文名稱: |
探討血管內皮細胞IRS-1過度表現促進血管新生的機制 The mechanism of angiogenesis induced by IRS-1 overexpression in vascular endothelial cells |
| 指導教授: |
杜伊芳
Tu, Yi-Fang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 臨床醫學研究所 Institute of Clinical Medicine |
| 論文出版年: | 2019 |
| 畢業學年度: | 108 |
| 語文別: | 英文 |
| 論文頁數: | 59 |
| 中文關鍵詞: | 胰島素受體底物-1 、血管新生 、血管內皮細胞 、β-肌動蛋白 、細胞骨架重排 |
| 外文關鍵詞: | Insulin receptor substrate-1 (IRS-1), angiogenesis, vascular endothelium, β-actin, cytoskeletal rearrangement |
| 相關次數: | 點閱:77 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
胰島素受體底物 1 (IRS-1)是一種訊號傳導物,而磷酸化後的 IRS-1可以當作一種蛋白質支架進而激活許多訊號傳導路徑。當IRS-1磷酸化時,它可以透過激活Rho訊號路徑以調節各種途徑,例如細胞骨架動力學,運動性,胞質分裂,細胞生長,細胞凋亡和轉錄活性。
許多研究報導指出胰島素/IRS-1可以在不同的臨床情況下促進或抑制血管新生。許多研究主張IRS-1可以促進管新生,但有一些研究則是主張IRS-1可以抑制血管新生。其中的調控機制並不清楚。血管新生是一種從原本存在的血管形成新的血管期間所發生的過程,其中包含著細胞增生、細胞遷移和管腔形成作用。所以,細胞骨架重排也涉及血管新生過程中的細胞遷移,細胞增生和管腔形成。其中,肌動蛋白是細胞骨架元素之一,所以在血管新生過程中也扮演重要的角色。
在我們的研究中,我們透過使用不同的轉染方式去建立兩種不同情況的IRS-1過度表現的細胞:模擬急性IRS-1過度表現(tIRS-1)以及慢性IRS-1過度表現(cIRS-1)。我們發現在急性表現中的tIRS-1細胞會增加細胞遷移與管腔形成能力。但相反地,在慢性IRS-1表現中的cIRS-1細胞則是會降低細胞遷移能力。這意味著急性的IRS-1過度表現會促進血管新生,但慢性的IRS-1過度表現則是會抑制血管新生。此外,我們還發現在慢性的IRS-1表現中的cIRS-1細胞透過減少β-肌動蛋白的信使核糖核酸產生來降低 β-肌動蛋白的蛋白表現量以及改變了肌動蛋白纖維的分佈。同時發現在慢性IRS-1表現中的cIRS-1細胞絲切蛋白(cofilin)的活性增加。所以我們使用絲切蛋白(cofilin)的小分子干擾核糖核酸(siRNA)來抑制絲切蛋白的表現,發現β-肌動蛋白表現量,肌動蛋白纖維的分佈與細胞遷移能力能獲得部分改善。可知IRS-1的過度表現會在不同的情況下促進或抑制血管新生,可能是透過影響肌動蛋白動力學和細胞骨架重排來調控血管新生中細胞遷移能力。
Insulin receptor substrate 1 (IRS-1) is a signal transducer and phosphorylated IRS-1 acts as a protein scaffold to activates many signaling pathways. When IRS-1
phosphorylation, it can activate various pathways, including the Rho pathway to regulate cytoskeletal dynamics, motility, cytokinesis, cell growth, apoptosis, and associated transcriptional activity.
Many studies have reported that insulin/IRS-1 can paradoxically regulate angiogenesis in different clinical situations. Several studies supported that IRS-1 promotes angiogenesis, but some studies revealed that IRS-1 inhibits angiogenesis. Angiogenesis is a process that occurs during the formation of new blood vessels from previously existing blood vessels which involves cell proliferation, cell migration, and tube formation. Among these processes of angiogenesis, cytoskeletal rearrangement plays an important role in cell migration, proliferation, and luminal formation. Actin is one of the cytoskeletal elements, and its dynamics promote cell motility, division, and vesicle trafficking.
In our study, we established two cell models: (1) acute IRS-1 overexpressed hBMEC cells by transient transfection (tIRS-1) and (2) chronic stable overexpressed hBMEC cells by building up stable clones (cIRS-1). The results showed that tIRS-1 cells increase cell migration and tube formation ability. In contrast, cIRS-1 clones decrease migration ability. The β-actin gene transcription and protein expression were reduced in cIRS-1 clones, and actin fiber distribution was disrupted. The actin polymerization regulator, cofilin, was found to increase its expression in cIRS-1 clones. After knock-down cofilin by siRNA, β-actin protein expression, the distribution of actin fibers and the cell migration ability were partially reversed in cIRS-1 clones.
In conclusion, IRS-1 overexpression can paradoxically regulate angiogenesis. It promotes angiogenesis in acute IRS-1 overexpression and inhibits angiogenesis in chronic IRS-1 overexpression. Moreover, chronic IRS-1 overexpression inhibits angiogenesis through activating cofilin, reducing β-actin gene transcription and disrupting actin dynamics.
1. Silva, L. et al. Insulin/adenosine axis linked signalling. Mol Aspects Med 2017;55:45-61
2. Cheatham, B. & Kahn, C.R. Insulin action and the insulin signaling network. Endocr Rev 1995;16:117-142
3. Boucher, J., Kleinridders, A. & Kahn, C.R. Insulin receptor signaling in normal and insulin-resistant states. Cold Spring Harb Perspect Biol 2014;6
4. Machado-Neto, J.A. et al. Insulin Substrate Receptor (IRS) proteins in normal and malignant hematopoiesis. Clinics (Sao Paulo) 2018;73:e566s
5. Mardilovich, K., Pankratz, S.L. & Shaw, L.M. Expression and function of the insulin receptor substrate proteins in cancer. Cell Commun Signal 2009;7:14
6. Versteyhe, S. et al. Insulin receptor substrates-5 and -6 are poor substrates for the insulin receptor. Mol Med Rep 2010;3:189-193
7. Dinsmore, C.J. & Soriano, P. MAPK and PI3K signaling: At the crossroads of neural crest development. Developmental biology 2018
8. Prudnikova, T.Y., Rawat, S.J. & Chernoff, J. Molecular pathways: targeting the kinase effectors of RHO-family GTPases. Clinical Cancer Research 2015;21:24-29
9. Wennerberg, K., Rossman, K.L. & Der, C.J. The Ras superfamily at a glance. J Cell Sci 2005;118:843-846
10. 黃名儀. 在新生兒缺血缺氧性腦傷中, 血管內皮細胞 IRS-1 透過增加神經發炎反應加重神經血管的傷害. 成功大學臨床醫學研究所學位論文 2015:1-49
11. Ma, Z. et al. Suppression of insulin receptor substrate 1 (IRS-1) promotes mammary tumor metastasis. Mol Cell Biol 2006;26:9338-9351
12. Robich, M.P. et al. Resveratrol modifies risk factors for coronary artery disease in swine with metabolic syndrome and myocardial ischemia. Eur J Pharmacol 2011;664:45-53
13. Menzel-Severing, J. Emerging techniques to treat corneal neovascularisation. Eye 2012;26:2
14. Katagiri, S. et al. Overexpressing IRS1 in Endothelial Cells Enhances Angioblast Differentiation and Wound Healing in Diabetes and Insulin Resistance. Diabetes 2016;65:2760-2771
15. Wang, Y.L. et al. miR-195 inhibits tumor growth and angiogenesis through modulating IRS1 in breast cancer. Biomed Pharmacother 2016;80:95-101
16. Zheng, H. et al. MicroRNA-1225-5p inhibits proliferation and metastasis of gastric carcinoma through repressing insulin receptor substrate-1 and activation of β-catenin signaling. Oncotarget 2016;7:4647
17. Feizi, S., Azari, A.A. & Safapour, S. Therapeutic approaches for corneal neovascularization. Eye Vis (Lond) 2017;4:28
18. Shi, W. et al. Glucocorticoid receptor–IRS-1 axis controls EMT and the metastasis of breast cancers. Journal of molecular cell biology 2019
19. Folkman, J. & Shing, Y. Angiogenesis. J Biol Chem 1992;267:10931-10934
20. Salajegheh, A. Angiogenesis in health, disease and malignancy. 2016.
21. Bayless, K.J. & Johnson, G.A. Role of the cytoskeleton in formation and maintenance of angiogenic sprouts. J Vasc Res 2011;48:369-385
22. Okada, H. et al. Regulation of decidualization and angiogenesis in the human endometrium: mini review. J Obstet Gynaecol Res 2014;40:1180-1187
23. Kerbel, R.S. Molecular origins of cancer: Tumor angiogenesis. New Engl J Med 2008;358:2039-2049
24. Yoo, S.Y. & Kwon, S.M. Angiogenesis and Its Therapeutic Opportunities. Mediat Inflamm 2013
25. Johnson, K.E. & Wilgus, T.A. Vascular Endothelial Growth Factor and Angiogenesis in the Regulation of Cutaneous Wound Repair. Adv Wound Care (New Rochelle) 2014;3:647-661
26. Jiang, W.N., Akagi, T., Suzuki, H., Takimoto, A. & Nagai, H. A new diatom growth inhibition assay using the XTT colorimetric method. Comp Biochem Phys C 2016;185:13-19
27. Justus, C.R., Leffler, N., Ruiz-Echevarria, M. & Yang, L.V. In vitro Cell Migration and Invasion Assays. Jove-J Vis Exp 2014
28. Ponce, M.L. Tube formation: an in vitro matrigel angiogenesis assay. Methods Mol Biol 2009;467:183-188
29. Norton, K.A. & Popel, A.S. Effects of endothelial cell proliferation and migration rates in a computational model of sprouting angiogenesis. Sci Rep 2016;6:36992
30. DeCicco-Skinner, K.L. et al. Endothelial cell tube formation assay for the in vitro study of angiogenesis. J Vis Exp 2014:e51312
31. Fletcher, D.A. & Mullins, D. Cell mechanics and the cytoskeleton. Nature 2010;463:485-492
32. Skruber, K., Read, T.A. & Vitriol, E.A. Reconsidering an active role for G-actin in cytoskeletal regulation. J Cell Sci 2018;131
33. Rottner, K., Faix, J., Bogdan, S., Linder, S. & Kerkhoff, E. Actin assembly mechanisms at a glance. J Cell Sci 2017;130:3427-3435
34. Lee, S.H. & Dominguez, R. Regulation of actin cytoskeleton dynamics in cells. Mol Cells 2010;29:311-325
35. Stuhrmann, B., Huber, F. & Kas, J. Robust organizational principles of protrusive biopolymer networks in migrating living cells. PLoS One 2011;6:e14471
36. Bernard, O. Lim kinases, regulators of actin dynamics. Int J Biochem Cell B 2007;39:1071-1076
37. Olson, E.N. & Nordheim, A. Linking actin dynamics and gene transcription to drive cellular motile functions. Nat Rev Mol Cell Bio 2010;11:353-365
38. Courtemanche, N. & Pollard, T.D. Interaction of profilin with the barbed end of actin filaments. Biochemistry 2013;52:6456-6466
39. Chan, A.Y., Bailly, M., Zebda, N., Segall, J.E. & Condeelis, J.S. Role of cofilin in epidermal growth factor-stimulated actin polymerization and lamellipod protrusion. J Cell Biol 2000;148:531-542
40. McGough, A., Pope, B., Chiu, W. & Weeds, A. Cofilin changes the twist of F-actin: Implications for actin filament dynamics and cellular function. J Cell Biol 1997;138:771-781
41. Kanellos, G. & Frame, M.C. Cellular functions of the ADF/cofilin family at a glance. J Cell Sci 2016;129:3211-3218
42. Gualdrini, F. et al. SRF co-factors control the balance between cell proliferation and contractility. Molecular cell 2016;64:1048-1061
43. Perrin, B.J. & Ervasti, J.M. The actin gene family: function follows isoform. Cytoskeleton (Hoboken) 2010;67:630-634
44. Vindin, H. & Gunning, P. Cytoskeletal tropomyosins: choreographers of actin filament functional diversity. J Muscle Res Cell Motil 2013;34:261-274
45. Bunnell, T.M., Burbach, B.J., Shimizu, Y. & Ervasti, J.M. β-Actin specifically controls cell growth, migration, and the G-actin pool. Molecular biology of the cell 2011;22:4047-4058
46. Qiao, Y.T. et al. YAP Regulates Actin Dynamics through ARHGAP29 and Promotes Metastasis. Cell Rep 2017;19:1495-1502
47. Halder, G., Dupont, S. & Piccolo, S. Transduction of mechanical and cytoskeletal cues by YAP and TAZ. Nat Rev Mol Cell Bio 2012;13:591-600
48. Scott, L.E., Weinberg, S.H. & Lemmon, C.A. Mechanochemical Signaling of the Extracellular Matrix in Epithelial-Mesenchymal Transition. Frontiers in cell and developmental biology 2019;7
49. Peng, J.M. et al. Actin cytoskeleton remodeling drives epithelial-mesenchymal transition for hepatoma invasion and metastasis in mice. Hepatology 2018;67:2226-2243
50. Scanlon, C.S., Van Tubergen, E.A., Inglehart, R.C. & D'Silva, N.J. Biomarkers of epithelial-mesenchymal transition in squamous cell carcinoma. J Dent Res 2013;92:114-121
51. Neelakantan, D. et al. EMT cells increase breast cancer metastasis via paracrine GLI activation in neighbouring tumour cells. Nat Commun 2017;8:15773
校內:2025-02-07公開