簡易檢索 / 詳目顯示

研究生: 袁子鈞
Yuan, Tzu-Chun
論文名稱: 三維點雲匹配與分析及其於盛鋼桶之缺陷檢測
3D Point Cloud Alignment and Analysis for Defect Detection on Ladle Furnace
指導教授: 彭兆仲
Peng, Chao-Chung
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 78
中文關鍵詞: 三維點雲建模三維點雲特徵萃取非破壞檢測缺陷檢測破壞預測
外文關鍵詞: 3D Point Cloud Modeling, 3D Point Cloud Feature Extraction, Nondestructive Testing, Defect Detection, Failure Prediction
相關次數: 點閱:145下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要 i Extended Abstract ii 誌謝 viii 目錄 ix 表目錄 xi 圖目錄 xii 第1章 緒論 1 1.1 研究動機與目的 1 1.2 文獻回顧 3 1.3 論文架構 6 第2章 建立三維點雲模型 8 2.1 感測器模型與座標轉換 8 2.1.1 飛時測距測量深度資訊 9 2.1.2 相機模型 9 2.1.3 反向投影計算點雲座標 16 2.2 感測器性能與量測極限 17 2.3 模擬盛鋼桶設備之三維點雲建模 23 第3章 點雲對齊 25 3.1 剛性對齊 25 3.2 最近點疊代法 26 3.2.1 平移向量t的一階偏導數 26 3.2.2 奇異值分解求解旋轉矩陣R 28 3.3 主成份分析修正初始姿態 31 3.4 盛鋼桶三維點雲對齊結果 34 第4章 特徵萃取與變異點偵測 38 4.1 範圍搜索法定義局部區域 38 4.2 奇異值分解完成平面擬合 40 4.3 三維點雲特徵萃取 42 4.4 建立三維點雲對應點關係 44 4.5 點雲特徵比對與變異點偵測 46 第5章 變異點分群與追蹤 49 5.1 變異點篩選與填補 49 5.2 變異點分群與變異區域標定 51 5.3 計算變異區域面積與中心位置 53 第6章 實驗結果與分析 56 6.1 MATLAB數位模擬 56 6.2 盛鋼桶模型缺陷檢測與追蹤 64 第7章 結論與未來研究方向 74 參考文獻 76

    [1] R. Usamentiaga, P. Venegas, J. Guerediaga, L. Vega, J. Molleda, and F. G. Bulnes, "Infrared thermography for temperature measurement and non-destructive testing," Sensors, vol. 14, no. 7, pp. 12305-12348, 2014.
    [2] B. Chakraborty and B. K. Sinha, "Process-integrated steel ladle monitoring, based on infrared imaging–a robust approach to avoid ladle breakout," Quantitative InfraRed Thermography Journal, vol. 17, no. 3, pp. 169-191, 2020.
    [3] M. Viale, O. Martin, F. Muratori, U. Bertezzolo, J. Perez, and J. Usart, "Application of on-line infrared thermography in steel making industry," in Thermosense XXIX, 2007, vol. 6541, p. 65410H: International Society for Optics and Photonics.
    [4] R. Horaud, M. Hansard, G. Evangelidis, and C. Ménier, "An overview of depth cameras and range scanners based on time-of-flight technologies," Machine vision and applications, vol. 27, no. 7, pp. 1005-1020, 2016.
    [5] H. Zhu et al., "A review of point set registration: From pairwise registration to groupwise registration," Sensors, vol. 19, no. 5, p. 1191, 2019.
    [6] B. Maiseli, Y. Gu, and H. Gao, "Recent developments and trends in point set registration methods," Journal of Visual Communication and Image Representation, vol. 46, pp. 95-106, 2017.
    [7] K. S. Arun, T. S. Huang, and S. D. Blostein, "Least-squares fitting of two 3-D point sets," IEEE Transactions on pattern analysis and machine intelligence, no. 5, pp. 698-700, 1987.
    [8] P. J. Besl and N. D. McKay, "A method for registration of 3-D shapes," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 14, no. 2, pp. 239-256, 1992.
    [9] S. Rusinkiewicz and M. Levoy, "Efficient variants of the ICP algorithm," in Proceedings third international conference on 3-D digital imaging and modeling, 2001, pp. 145-152: IEEE.
    [10] K.-L. Low, Linear Least-Squares Optimization for Point-to-Plane ICP Surface Registration. 2004.
    [11] Y. Wang, R. Xiong, and Q. Li, "Em-Based Point to Plane ICP for 3D Simultaneous Localization and Mapping," I. J. Robotics and Automation, vol. 28, 2013.
    [12] A. Myronenko and X. Song, "Point set registration: Coherent point drift," IEEE transactions on pattern analysis and machine intelligence, vol. 32, no. 12, pp. 2262-2275, 2010.
    [13] P. Biber, "The Normal Distributions Transform : A New Approach to Laser Scan Matching," Proc. of IROS2003, 2003 2003.
    [14] M. Magnusson, The three-dimensional normal-distributions transform an efficient representation for registration, surface analysis, and loop detection. Örebro: Örebro universitet, 2009.
    [15] A. Abellán, M. Jaboyedoff, T. Oppikofer, and J. Vilaplana, "Detection of millimetric deformation using a terrestrial laser scanner: experiment and application to a rockfall event," Natural hazards and earth system sciences, vol. 9, no. 2, pp. 365-372, 2009.
    [16] A. Abellán, J. Calvet, J. M. Vilaplana, and J. Blanchard, "Detection and spatial prediction of rockfalls by means of terrestrial laser scanner monitoring," Geomorphology, vol. 119, no. 3-4, pp. 162-171, 2010.
    [17] W. Liu, S. Chen, and E. Hauser, "LiDAR-based bridge structure defect detection," Experimental Techniques, vol. 35, no. 6, pp. 27-34, 2011.
    [18] Y. Turkan, J. Hong, S. Laflamme, and N. Puri, "Adaptive wavelet neural network for terrestrial laser scanner-based crack detection," Automation in construction, vol. 94, pp. 191-202, 2018.
    [19] A. Janowski, K. Nagrodzka-Godycka, J. Szulwic, and P. Ziolkowski, "Remote sensing and photogrammetry techniques in diagnostics of concrete structures," Computers and Concrete, vol. 18, no. 3, pp. 405-420, 2016.
    [20] J.-S. Yoon, M. Sagong, J. Lee, and K.-s. Lee, "Feature extraction of a concrete tunnel liner from 3D laser scanning data," Ndt & E international, vol. 42, no. 2, pp. 97-105, 2009.
    [21] M. Makuch and P. Gawronek, "3D point cloud analysis for damage detection on hyperboloid cooling tower shells," Remote Sensing, vol. 12, no. 10, p. 1542, 2020.
    [22] M.-K. Kim, H. Sohn, and C.-C. Chang, "Localization and quantification of concrete spalling defects using terrestrial laser scanning," Journal of Computing in Civil Engineering, vol. 29, no. 6, p. 04014086, 2015.
    [23] I. Jovančević et al., "3D point cloud analysis for detection and characterization of defects on airplane exterior surface," Journal of Nondestructive Evaluation, vol. 36, no. 4, pp. 1-17, 2017.
    [24] T. Reyno, C. Marsden, and D. Wowk, "Surface damage evaluation of honeycomb sandwich aircraft panels using 3D scanning technology," NDT & E International, vol. 97, pp. 11-19, 2018.
    [25] A. A. Siddiqui, "A New Inspection Method Based on RGB-D Profiling," Virginia Tech, 2015.
    [26] K. Klasing, D. Althoff, D. Wollherr, and M. Buss, "Comparison of surface normal estimation methods for range sensing applications," in 2009 IEEE International Conference on Robotics and Automation, 2009, pp. 3206-3211: IEEE.
    [27] M. Pauly, M. Gross, and L. P. Kobbelt, "Efficient simplification of point-sampled surfaces," in IEEE Visualization, 2002. VIS 2002., 2002, pp. 163-170.
    [28] J. J. Koenderink and A. J. Van Doorn, "Surface shape and curvature scales," Image and vision computing, vol. 10, no. 8, pp. 557-564, 1992.
    [29] J. Sell and P. O'Connor, "The xbox one system on a chip and kinect sensor," IEEE Micro, vol. 34, no. 2, pp. 44-53, 2014.
    [30] D. Pagliari and L. Pinto, "Calibration of kinect for xbox one and comparison between the two generations of microsoft sensors," Sensors, vol. 15, no. 11, pp. 27569-27589, 2015.
    [31] P. Fankhauser, M. Bloesch, D. Rodriguez, R. Kaestner, M. Hutter, and R. Siegwart, "Kinect v2 for mobile robot navigation: Evaluation and modeling," in 2015 International Conference on Advanced Robotics (ICAR), 2015, pp. 388-394: IEEE.
    [32] 林牧衡, "太空載具三維姿態自我感知與登陸決策," 2019.
    [33] H. Edelsbrunner, D. Kirkpatrick, and R. Seidel, "On the shape of a set of points in the plane," IEEE Transactions on information theory, vol. 29, no. 4, pp. 551-559, 1983.

    無法下載圖示 校內:2026-07-20公開
    校外:2026-07-20公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE