簡易檢索 / 詳目顯示

研究生: 陳奕興
Chen, Yi-Hsing
論文名稱: 黏菌發育必需基因之鑑別
Identification of Gene Required for Development in Dictyostelium
指導教授: 張文粲
Chang, Wen-Tsan
學位類別: 碩士
Master
系所名稱: 醫學院 - 生物化學研究所
Department of Biochemistry
論文出版年: 2002
畢業學年度: 90
語文別: 英文
論文頁數: 77
中文關鍵詞: 過氧化體限制酶插入突變法黏菌檸檬酸合成酶
外文關鍵詞: Restriction Enzyme-Mediated Integration, citrate synthase, Dictyostelium, peroxisome
相關次數: 點閱:99下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 檸檬酸合成酶普遍存在各生物體系,扮演催化各種營養物代謝的最終產物乙醯輔酶A進入檸檬酸循環的角色。檸檬酸循環同時具有分解產生能量及合成胞內物質的角色,其運轉順暢與否和細胞的生存有直接關係。有些物種擁有單一檸檬酸合成酶,有些則有兩個甚至三個。因物種不同,其主要存在於粒腺體,但也有些位於過氧化體(peroxisome),過氧化體具有代謝及分解有毒物質的功能,其數量,大小及蛋白質組成會因細胞的不同而不同。以限制酶插入突變法所產生的突變株WTC127,菌落大小明顯小於野生型菌落,且結構稀疏無法發育成成熟的子實體(fruiting body),具有細胞生長缺陷的現象。被破壞的基因會轉譯成檸檬酸合成酶同源蛋白質(Citrate synthase homology protein, CshA),分子量約55 KDa,而基因表現在細胞生長期至發育中期。在蛋白質胺端序列上具有進入過氧化體的訊息序列PTS2,因此CshA應該是屬於過氧化體間質蛋白。突變株在細菌的吞噬作用(phagocytosis)方面較野生型差。同樣的,細胞生長數量缺陷也在震盪培養下被證實,但在細胞分裂(cytokinesis)方面並沒有任何異常。最後,突變株細胞與細菌混合在飢餓的環境下進行發育,我們觀察到與細菌混合的狀態下可以重現在菌落中發育嚴重受到干擾的表現型,開始聚集發育的時間也比野生株延遲約20小時,證實了發育嚴重缺失的表現型與細菌的存在有直接的關係。這到底是細菌的代謝產物所致,亦或者是吞噬細菌後對突變株發育造成抑制,甚至是突變株無法分泌出某些物質所致?我們目前並不清楚這其中的關連。由於在飢餓的狀態下WTC127發育正常,因此我們對另外一個黏菌檸檬酸合成酶GltA(glutamate auxotroph)的基因表現感到興趣,是否當CshA缺失時GltA可能扮演替代品的角色。我們證實了黏菌中同源性檸檬酸合成酶的存在,同時我們找到部分gltA基因也知道其基因在黏菌的發育生活史的各個時期中持續表現,我們猜想當CshA缺失時GltA可能扮演替代品的角色,以致在飢餓時突變株發育正常。在另外一個以限制酶插入突變法所產生的突變株WTC180方面,被破壞的基因是未知基因,其突變株會進行正常聚集發育,但形成頂尖(apical tip)的時間約延遲6小時,最終會形成極為短小的結構,同時我們也以同源重組(homologous recombination)的方式證實了這個未知基因的被破壞,的確造成了這種特異的表現型。

    Citrate synthase is an almost ubiquitous enzyme. Its role is a catalyst of the entry point reaction for entry of two-carbon units into the citric acid cycle. It is an essential step in the biosynthesis of amino acids. Some organisms have a single citrate synthase, while a few, have as many as three. Peroxisomes show a remarkable metabolic plasticity. Their size, numbers, protein composition and biochemical functions vary that depending on the organism, cell type and/or environmental condition. By screening developmentally morphological mutants generated by the restriction enzyme-mediated integration (REMI) mutagenesis, we have found two mutants WTC127 and WTC180. The plaques of WTC127 cells have sparse structures, and cannot form the terminal fruiting bodies, and the sizes of plaques are strikingly smaller than wild type cells on the bacterial plate. The disrupted gene of mutant strain WTC127 encodes a citrate synthase homology protein, CshA, contained a conserved peroxisomal targeting signal PTS2 nonapeptide sequence at the N terminus. Phagocytosis of cshA- cells is slightly worse than wild type and the results of flow cytometry are the same. The growth of cshA- cells have a strikingly defect in axenic medium, but mitosis of cshA- cells is normal. Finally, mixing cshA- cells with K. aerogenes and developing on KK2 agar, the aberrant developmental phenotype of cshA- mutant can be observed at 72 hr, and the aggregation of cshA- cells delayed about 20 hours. The presence of bacteria interferes the multicellular development of cshA- cells, but it is still unclear why cshA- cells cannot form mature fruiting bodies. Because the developmental program of WTC127 is normal on KK2 agar, we are interested in the role of another citrate synthase gene, gltA (glutamate auxotroph). We determined the existence of other citrate synthase homology protein, and GltA was considered the potential another citrate synthase in Dictyostelium. Analyzing the 3’-terminal of cDNA fragment, there is not any signal peptide including in C-terminal of GltA. RT-PCR analysis indicated that gltA mRNA is expressed throughout the development. We think that gltA is a substitute for cshA- cell during development. The WTC180 cells formed distinctly smaller structures than wild type on a bacterial plate. The disrupted gene of mutant strain WTC180 is a novel gene. Mutant cells were able to form normal aggregation streams upon starvation, but the formation of tip mound delayed about 6 hours. The terminal structures, very small size of fruiting bodies, completed at 36 hr.

    ABSTRACT I 中文摘要 Ⅲ 誌謝 V CONTENT VI FIGURE CONTENT VII INTRODUCTION 1 MATERIALS and METHODS 15 RESULT 24 DISCUSSION 31 REFERENCES 35 FIGURES 41 自述 77 FIGURE CONTENT Figure 1 Possible integration of anaplerotic and bypass pathways with the TCA cycle 41 Table 1 Model organisms used for the study of peroxisomes 42 Figure 2 Targeting signals used by peroxisomal proteins 43 Figure 3 Life cycle of Dictyostelium 44 Figure 4 Restriction enzyme-mediated integration in Dictyostelium 45 Figure 5 REMI vectors 46 Figure 6 Developmental phenotypes of the wild type and WTC127 mutant on bacterial plates 47 Figure 7 Southern blot analysis of the WTC127 mutant 48 Figure 8 Developmental morphology of the wild type and WTC127 mutant 49 Figure 9 Southern blot analysis of original and recreated mutants 50 Figure 10 Western blot analysis of the CshA protein 51 Figure 11 SDS-PAGE analysis of purified CshA protein 52 Figure 12 Amino acid sequence analysis of DdCshA 53 Figure 13 Sequence alignment of DdCshA and CmGCS 54 Figure 14 Southern blot analysis of the cshA copy number 55 Figure 15 Northern blot analysis of the cshA gene expression during Dictyostelium development 56 Figure 16 Cellular location of the CshA protein 57 Figure 17 N-terminal sequence alignment of citrate synthase proteins 58 Figure 18 Growth rate of REMI mutant WTC127 on the SM-agar bacterial plate 59 Table 2 Growth rate of REMI mutant WTC127 on the SM-agar bacterial plate 60 Figure 19 Phagocytosis of the wild type and WTC127 mutant 61 Figure 20 Phagocytosis of the wild type and WTC127 mutant 62 Figure 21 Cell growth curve of the wild type and WTC127 63 Figure 22 DAPI staining of the cshA- cell 64 Figure 23 Developmental morphology of the wild type and WTC127 mutant on bacterial KK2 agar 65 Figure 24 Southern blot analysis of cshA gene in Dictyostelium at lower hybridization stringency 66 Figure 25 Partial nucleotide and deduced amino acid sequences of the gltA gene 67 Figure 26 Sequence alignment of CshA and GltA 68 Figure 27 Sequence alignment of DdGltA and AtPCS 69 Figure 28 Comparison of Southern blot analyses of the gltA copy number and cshA gene in Dictyostelium at lower hybridization stringency (45oC) 70 Figure 29 Expression of gltA during development 71 Figure 30 Southern blot analysis of the WTC180 mutant 72 Figure 31 Morphology of the wild type and WTC180 mutant on bacterial agar 73 Figure 32 Developmental morphology of the wild type and WTC180 mutant 74 Figure 33 Southern blot analysis of original and recreated mutants 75 Figure 34 Partial nucleotide sequence of the WTC180 76

    Alfrey, A.C., Nicolini P.F., Zatta B. Corain. (1991). Aluminium in chermistry biology and medicine. Raven Press. 73-84.
    Anjard, C., Chang, W. T., Gross, J. and Nellen, W. (1998). Production and activity of spore differentiation factors (SDFs) in Dictyostelium. Development 125, 4067-75.
    Aubry, L., and Firtel, R. (1999). Integration of signaling networks that regulate Dictyostelium differentiation. Annu. Rev. Cell Dev. Biol. 15, 469-517.
    Braverman, N., Dodt, G., Gould, S. J. and Valle, D. (1998). An isoform of Pex5p, the human PTS1 receptor, is required for the import of PTS2 proteins into peroxisomes. Hum. Mol. Genet. 7, 1195–205.
    Brown, J. M. and Firtel, R. A. (1999). Regulation of cell-fate determination in Dictyostelium. Developmental biology 216, 426-41.
    Cox, E. C., Vocke C. D., Walter, S., Gregg, K. Y., Bain. (1990). Electrophoretic karyotype for Dictyostelium discoideum. Proc Natl Acad Sci USA 87, 8247-51.
    Devlin, T. M. (1998). The tricarboxylic acid cycle. Textbook of Biochemistry with Clinical Correlations. 231.
    De la Fuente, J. M., Ramirez-Rodriguez, V., Cabrera-Ponce, J. L., Herrera-Estrella, L. (1997). Aluminum tolerance in transgenic plants by alteration of Citrate Synthesis. Science 276, 1566-1568.
    Duntze, W., Neumann, D., Gancedo, J. M., Atzpodien, W., Holzer, H.. (1969). Studies on the regulation and localization of the glyoxylate cycle enzymes in Saccharomyces cerevisiae.Eur J Biochem. 1, 83-9.
    Duckworth and Brayer, G. D. (2001). Comparative analysis of folding and substrate binding sites between regulated hexameric type II citrate synthases and
    unregulated dimeric type I enzymes. Biochemistry 40, 13177-87.
    Edwardson. (1998). Gastrointestinal absorption of aluminium and citrate in man. J. Inorg Biochem. 69, 165-9.
    Fisher, P. R., Smith, E. Williams, K. L. (1981). An extracellular chemical signal controlling phototactic behavior by D. discoideum slugs. Cell 23, 799-807.
    Firtel, R. A. and Meili, R. (2000). Dictyostelium: a model for regulated cell movement during morphogenesis. Curr. Opin. Genet. Dev. 10, 421-7.
    Fujiki, Y. (2000). Peroxisome biogenesis and peroxisome biogenesis disorders. FEBS Lett. 476, 42–6.
    Gardner, M. J., Tettelin, H., Carucci, D.J., Cummings, L. M., Adams, M. D., Smith, H. O., Venter, J. C., Hoffman, S. L. (1998). The Malaria genome sequencing project. Protist 149, 109-12.
    Garland, P. B., Randle, P. J., and Newsholme, E. A. (1963). Citrate as an intermediary in the inhibition of phosphofructokinase in rat heart muscle by fatty acids, ketone bodies, pyruvate, diabetes and starvation. Nature. 200, 169-70.
    Geraghty, M. T., Bassett, D., Morrell, J. C., Gatto, G. J., Jr, Bai. J., Geisbrecht, B. V., Hieter, P., Gould, S. J. (1999). Detecting patterns of protein distribution and gene expression in silico. Proc. Natl Acad. Sci. 96, 2937–42.
    Goffeau, A., Barrell, B. G., Bussey, H., Davis, R. W., Dujon, B., Feldmann, H., Galibert, F., Geoffrey, A., Taylor, Peter, B., Moore, I., Nicol, Ferrier., Steven, P., Tyrer, James, A., Greger, I. L. (1993). Aluminum metabolism. Annu Rev Nutr. 13, 43-63.
    Gould, S. J. and Valle, D. (2000). Peroxisome biogenesis disorders: genetics and cell biology. Trends Genet. 16, 340–345.
    Hales, K. G., Bi, E., Wu, J. Q., Adam, J. C., Yu, I. C., Pringle, J. R. (1999) Cytokinesis: an emerging unified theory for eukaryotes? Curr. Opin. Cell Biol. 11, 705-7.
    Hiroyuki Koyama, Ayako Kawamura, Tomonori Kihara, Tetsuo Hara, Eiji Takita and Daisuke Shibata. (2000). Overexpression of mitochondrial citrate synthase in Arabidopsis thaliana improved growth on a phosphorus-limited soil. Plant Cell Physiol. 41, 1030-7.
    Hoheisel, J. D., Jacq, C., Johnston, M., Louis, E. J., Mewes, H. W., Murakami, Y., Philippsen, P., Tettelin, H., Oliver, S. G. (1996). Life with 6000 genes. Science. 274 , 546-67.
    Janssen, K. P. and Schleicher, M. (2001). Dictyostelium discoideum: a genetic model system for the study of professional phagocytes. Profilin, phosphoinositides and the lmp gene family in Dictyostelium. Biochim. Biophys. Acta. 1525, 228-33.
    Kim, K. S., Rosenkrantz, M. S. and Guarente, L. (1986). Saccharomyces cerevisiae contains two functional citrate synthase genes. Mol Cell Biol. 6, 1936-42.
    Kuspa, A. and Loomis, W. F. (1992). Tagging developmental genes in Dictyostelium by restriction enzyme-mediated integration of plasmid DNA. Proc. Natl Acad. Sci. USA. 89, 8803-7.
    Lazarow, P. B. and Fujiki, Y. (1985). Biogenesis of peroxisomes. Annu. Rev. Cell Biol. 1, 489–530.
    Loomis, W. F. and Kuspa, A. (1997). "The genome of Dictyostelium discoideum." In Dictyostelium - A model system for cell and developmental biology., ed. Y Maeda, K Inouye, and I Takeuchi. 15-30. Tokyo, Japan: Universal Academy Press.
    Danson, M. J. and Hough, D. W. (1998). Structure, function and stability of enzymes from the Archaea. Trends in microbiogy. 6, 307-14.
    Mohanty, S., Jermyn, K. A., Early, A., Kawata, T., Aubry, L., Ceccarelli, A., Schaap, P., Williams, J. G. Firtel, R. A. (1999). Evidence that the Dictyostelium Dd-STATa protein is a repressor that regulates commitment to stalk cell differentiation and is also required for efficient chemotaxis. Development. 126, 3391-405.
    Mortimer, M. W., McDermott, T. R., York, G. M., Walker, G. C., Kahn, M. L. (1999). Citrate synthase mutants of Sinorhizobium meliloti are ineffective and have altered cell sufface polysaccharides. J. Bacteriol. 181, 7608-13.
    Muir, J. M., Russell, R. J. M., Hough, D. W. Danson, M. J. (1995). Citrate synthase from the hyperthermophilic Archaeon. Pyrococcus furiosus. Proten Eng. 8,583-592.
    Nelson, D. L. and Cox, M. M. (2000). Citric acid cycle components are important biosynthetic intermediates. Lehninger Principles of Biochemistry. 583.
    Nguyen, N. T., Maurus, R., Stokell, D. J., Ayed, A., Duckworth, H. W., Brayer, G. D. (2001). Comparative Analysis of Folding and Substrate Binding Sites between Regulated Hexameric Type II Citrate Synthases and Unregulated Dimeric Type I Enzymes. Biochemistry, 40, 13177-87.
    Nicol, A., Rappel, W., Levine, H. Loomis, W. F. (1999).Cell-sorting in aggregates of Dictyostelium discoideum. J. Cell Sci. 112, 3923-9.
    Otera, H., Okumoto, K., Tateishi, K., Ikoma, Y., Matsuda. E., Nishimura. M., Tsukamoto, T., Osumi, T., Ohashi, K., Higuchi, O., Fujiki, Y. (1998). Peroxisome targeting signal type 1 (PTS1) receptor is involved in import of both PTS1 and PTS2: studies with PEX5-defective CHO cell mutants. Mol. Cell Biol. 18, 388–99.
    Plyte, S. E., O'Donovan, E., Woodgett, J. R. and Harwood, A. J. (1999). Glycogen synthase kinase-3 (GSK-3) is regulated during Dictyostelium development via the serpentine receptor cAR3. Development. 126, 325-33.
    Prentki, M., and Corkey, B. E. (1996). Are the -cell signaling molecules malonyl-CoA and cytosolic long-chain acyl-CoA implicated in multiple tissue defects of obesity and NIDDM. Diabetes. 45, 273-83
    Ryan, P. R., Delhaize, E., Randall, J. P. (1995). Mitochondrial citrate synthase from potato: predominant expression in mature leaves and young flower buds. Planta 196, 756-64.
    Ruderman, N.B., Saha, A. K., Vavvas, D., Witters, L. A. (1999). Malonyl-CoA, fuel sensing, and insulin resistance. Am J Physiol Endocrinol Metab. 276, 1-18.
    Russell, R. J., Hough, D. W., Danson, M. J., Taylor, G.L. (1994). The crystal structure of citrate synthase from the thermophilic archaeon, Thermoplasma acidophilum. Structure. 2, 1157-67.
    Russell, R. J., Ferguson, J. M., Hough, D. W., Danson, M. J., Taylor, G. L. (1997). The crystal structure of citrate synthase from the hyperthermophilic archaeon pyrococcus furiosus at 1.9 A resolution. Biochemistry. 36, 9983-4.
    Russell, R. J., Gerike, U., Danson, M. J., Hough, D. W., Taylor, G. L. (1998). Structural adaptations of the cold-active citrate synthase from an Antarctic bacterium. Structure. 6, 351-361.
    Saha, A. K., Vavvas, D., Kurowski, T. G., Apazidis, A., Witters, L. A., Shafrir, E. Ruderman, N. B. (1997). Malonyl-CoA regulation in skeletal muscle: its link to cell citrate and the glucose-fatty acid cycle. Am J Physiol Endocrinol Metab. 272, 641-8.
    Saha, A. K., Laybutt, D. R., Dean, D., Vavvas, D., Sebokova, E., Ellis, B., Klimes, I., Kraegen, E. W., Shafrir, E., Ruderman, N. B. (1999). Cytosolic citrate and malonyl-CoA regulation in rat muscle in vivo. Am J Physiol Endocrinol Metab. 276, 1030-7.
    Smith, M. D. and Schnell, D. J. (2001). Peroxisomal protein import the paradigm shifts. Cell 105, 293-6.
    Subramani, S. (1993). Protein import into peroxisomes and biogenesis of the organelle. Annu. Rev. Cell Biol. 9, 445–478.
    Subramani, S., Koller, A., Snyder, W. B. (2000). Import of peroxisomal matrix and membrane proteins. Annu. Rev. Biochem. 69, 399–418.
    Sussman, M., (1987). Cultivation and synchronous morphogenesis of Dictyostelium under controlled experimental condition. Methods Cell Biol. 28, 9-29.
    Sutoh, K. (1993). A transformation vector for Dictyostelium discoideum with a new selectable marker bsr. Plasmid.30, 150-4.
    Titorenko, V. I. and Rachubinski, R. A. (2001). The life cycle of the peroxisome. Rev Mol Cell Biol 5, 357-68.
    Wanders, R. J. A. and Tager, J. M. (1998). Lipid metabolism in peroxisomes in relation to human disease. Mol. Aspects Med. 19, 69–154.
    Waterston, R. and Sulston, J. (1995). The genome of Caenorhabditis elegans. Proc Natl Acad Sci 92 , 10836-10840.

    下載圖示 校內:2003-08-30公開
    校外:2003-08-30公開
    QR CODE