| 研究生: |
林志安 Lin, Chih-an |
|---|---|
| 論文名稱: |
磁控濺鍍法製備摻雜錳之鐵酸鉍的研究 The study of Mn doped BiFeO3 by RF magnetic sputtering |
| 指導教授: |
齊孝定
Qi, Xiaoding |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2008 |
| 畢業學年度: | 96 |
| 語文別: | 中文 |
| 論文頁數: | 97 |
| 中文關鍵詞: | 鐵酸鉍 、濺鍍 |
| 外文關鍵詞: | BiFeO3, sputtering |
| 相關次數: | 點閱:61 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
BiFeO3(BFO)為目前在鐵電與磁性元件應用上最有潛力的材料之ㄧ,這是因為BFO比起其它的複鐵式材料具有很高的居禮溫度TC(~850oC) 和尼爾溫度TN(~370oC),在室溫下同時具有鐵電與鐵磁特性,相較於大部份的複鐵式材料,其尼爾溫度TN均在室溫以下,無法達到室溫應用的要求,也使得在實際的應用上有其限制。
本研究主要是探討BFO以不同比例之錳摻雜量[BiFe1-xMnxO3,其中x=0,0.1,0.2,0.3,0.4,簡稱為BFMO]對BFO之性質影響與改變,由於BiMnO3(BMO)是一種鐵磁性材料,其磁轉換溫度為105K,遠低於BFO之磁轉換溫度640K,而且Mn3+離子與Fe3+離子之半徑相近,因此本實驗希望在BFO之鈣鈦礦結構中,藉由Mn3+離子置換Fe3+離子來改善BFO之磁性質。
本實驗利用磁控濺鍍法使薄膜沉積在基板上,經過退火處理之 後,再進行一連串之性質分析,利用X光繞射儀(XRD)分析薄膜之結晶性, 利用化學分析電子光譜儀(XPS)探討離子之鍵結情況,利用場放射型掃描式電子顯微鏡(FE-SEM)觀察薄膜表面之微結構,利用原子力顯微鏡(AFM)觀察表面形貌,最後,再利用超導量子干涉震動磁量儀(SQUID VSM)測量薄膜之磁滯曲線,以了解薄膜之磁性表現。
我們可由實驗結果發現,從XRD分析可知隨著Mn之添加量愈多,則有愈多之雜相生成,顯示Mn並無法無限固溶於BFO中,而經由XPS之分析可知Mn離子主要是以正三價取代Fe離子正三價居多,由SEM分析可知Mn之掺雑量愈多,則晶粒有逐漸縮小的趨勢,而經由AFM之觀察可知隨著Mn之添加量愈多,則BFO之表面愈粗糙,此外,透過SQUID測量可以發現,微量之Mn添加時(x=0.1),會使飽和磁化強度(Ms)明顯提升。
BiFeO3(BFO) is one of the most potential multiferroic materials for new device applications. This is because BFO has high ferroelectric Curie temperature (850oC) and antiferromagnetic Neil temperature (370oC), which are both above room temperature. This research mainly investigated the effects of manganese doping, i.e. BiFe1-XMnXO3 x = 0, 0.1, 0.2, 0.3, 0.4, on the BFO properties. Because BiMnO3 (BMO) is a ferroelectric ferromagnet and also, Mn3 + ion has a similar radius to Fe3 + ion, it was expected to be able to replace some Fe3 + with Mn3 +, resulting in new magnetic properties in the mixed compound BiFe1-XMnXO3 (BFMO).
This experiment utilized RF magnetic sputtering to deposit films on the Si, SrTiO3 and LaAlO3 substrates at room temperature, which were subsequently sintered at high temperatures to form the desired phase. X-rays diffraction (XRD) was used to analyze the phase purity and structures of the prepared films, X-ray photoelectron spectroscopy (XPS) was used to study the ion bonding valence, field-emission scanning electron microscopy (FE-SEM) and atomic force microscopy (AFM) was used to observe the surface morphology of the films, and finally superconducting quantum interference device (SQUID) was used to measure the magnetization-magnetic field (M-H) hysteresis loops in order to understand the magnetic properties of the films.
We found that more impurity phases appeared with more addition of Mn, indicating that there was a limit for Mn doping in BFO. By the XPS analysis, it was shown that with the increased amount of Mn doping, the grain size of films became smaller . AFM showed that the more Mn addition, the rougher of the surface. It was also found by SQUID measurement that with the addition of Mn (x=0.1) , there was an increase of the saturated magnetization of the doped films.
1. B. Chapman, Glow Discharge Processes, John Wiley & Sons, New
York , 177, (1980)
2. B. Chapman, “Glow Discharge Processes”, John Wiley & Sons. Inc.
N.Y., Chap.6, (1980)
3. B. Chapman, “Glow Discharge Processes”, John Wiley & Sons. Inc.
N.Y., (1980), Bernhard Wolf, “Handbook of Ion Sources”, CRC. Press.
Inc., New York, (1995).
4. M. Ohring, The Materials Science of Thin Films, Academic Press,
New Jersey, 107 ,(1992)
5. L. John Vossen and Werner Kerm, "Thin Film Process", Academic
Process, 134, (1999).
6. 吳朗,“電子陶瓷入門”,全欣出版(1992).
7. K. B. Uhlman,“Introduction to Ceramics”, Wiley, New York (1976).
8. Y.H.Xu, "Ferroelectric Materials and Their Applications",
North-Holland, NewYork, (1991).
9. M. H. Frey and D.A. Payne, ”Grain-size effect on structure and phase
transformations Barium Titanate”, Phys. Rev .B.,54 ,3158,(1996)
10. Y. H. Xu, "Ferroelectric Materials and Their Applications"
North-Holland, NewYork, 102(1991).
11. B. H. Park, B. S. Kang, S. D. Bu, T. W Noh, J. Lee and W.
Jo,Lanthanum- substituted bismuth tianate for use in
non-volatilememories, Nature 401, 682 (1999).
12. W. D. Kingery, H. K. Bowen, and D. R. Uhlmann, Introduction to ceramics, John Wiley and Sons, New York, (1976).
13. C. Kittel, Introduction to solid state physics, 7th ed. John Wiley
&Sons, New York, (1996).
14. 張煦,李學養 磁性物理學, (1982).
15. G. Burns, Solid state physics, Academic Press, New York, (1985).
16. F. Kubel, and H. Schmid, Acta Crystallogr. 46 , 698,(1990).
17. V.A.Murashav,D.N.Rakov,V.M.Ionov,I,S.Dubenko,Y.U.Titov,
Ferroelectrics 162,11,(1994)
18. P. Fischer, M. Polomska, I. Sosnowska, and M. Szymański, J. Phys.
C 13,1931, (1980).
19. J. Wang, Epitaxial BiFeO3 Multiferroic thin fim heterostructures,
Science 299, 1719 (2003).
20. B. D. Cullity, Elements of X-Ray Diffraction, 2nd Ed.,Wiley, NewYork, (1978).
21. I. Sosnowska, P. Przenioslo, P. Fischer, and V. A. Murashov,
"Neutron Diffraction Studies of The Crystal and Magnetic Structures of BiFeO3 and Bi0.93La0.07FeO3 ",J. Magn. & Magn. Mater., 160, 384-385, (1996).
22. J.R.Teague, R.G.erson, and W.J.James, “Dielectric hysteresis in
single crystal BiFeO3”, Solid State Comm.8, 1073,(1970)
23. M.M.Kumar, V.R.Palker, K.Srinivas, and S.V.Sueyanaryana,
“Ferroelectricity in a pure BiFeO3 ceramic”, Appl. Phys. Lett.76,
2764, (2000)
24. Y.P.Wamg,L.Zhou,M.F.Zhang,X.Y.Chen,J.M.Liu,andZ.G.Liu, "Room-temperature saturated ferroelectric polarization in BiFeO3 ceramics synthesized by rapid lique phase sintering" Applied Phys.Lett,84,1731-1733,(2004)
25. V.R.Palkar,K.g.Kumara,S.K.Malik,"Observation of room-temperature magnetoelectric coupling in pulsed-laser-deposited Bi0.6Tb0.3La0.1FeO3 thin flims",J.Phys.58,1003,(2002)
26. K.Y.Yun,M.Noda,and M.Okuyama, "Prominent ferroelectricity of BiFeO3
thin flims prepared by
pulsed-laser-deposition",Appl.Phys.Lett.83,3981,(2003)
27. K.Y.Yun,M.Noda,and M.Okuyama,H.Seaki,H.Tabata.and K.Saito, "Structural and multiferroic properties of BiFeO3 thin flims at room temperature",J.Appl.Phys.96,3399-3403,204
28. R.Ueno,S.Okaura,H.Funakubo and K.Saito, "Crystal structure and electric properties of epitaxial BiFeO3 thin flims grown by metal organic chemical vapor deposition"J.J.Appl.Phys.44(39),L1231-L1233,(2005)
29. Y.H.Lee,J.M.Wu,Y.C.Chen,Y.H.Lu, and H.N.Lin "Surface chemistry and nanoscale characterizations of multiferroic BiFeO3 thin flims",Electrochemical and Solid-State Letters,8(10),F43-F47,(2005)
30. H.S.Gu,J.M.Xue,X.Gao,J.Wang,"Doping effect of BiFeO3 in layered perovskite SrBi2Nb2O9 "Materials Chemistry and Physics,75,105,(2002)
31. C.Cheon,J.Seog,K.Pyung,W.Jang, "Ferroelectric and Magnetic properties of PrFeo3 –PbTiO3 and PrFeo3 - BiFeO3–PbTiO3 thin
flims",J.J.Appl,phys,41,6777-6780,(2002)
32. B. Ruette, S. Zvyagin, A. P. Pyatakov, A. Bush, J. F. Li,
V. I. Belotelov, A. K. Zvezdin, and D. Viehland “Magnetic-field-induced phase transition in BiFeO3
observed by high-field electron spin order", Phys. Rev.
B 69, 064114 ,(2004).
33. Yu.F. Popov, A. Zvezdin, G. Vorob’ev, A. Kadomtseva, V.
Murashev, and D. Rakov, JETP Lett.57, 69 ,(1993)
34. K. Ueda, H. Tabata, T. Kawai, Appl. Phys. Lett. 75,555,(1999).
35. Xiaoding Qi, Joonghoe Dho, Rumen Tomov, Mark G. Blamire, and Judith L. MacManus-Driscoll, "Greatly reduced leakage current and conduction mechanism in aliovalent-ion-doped BiFeO3" Appl. Phys. Lett. 86, 062903, (2005)
36. J. K. Kim, S. S. Kim, W. J. Kim , A. S. Bhalla, and R. Guo , Appl. Phys. Lett. 88,132901, (2006)
37. C.-H.Yang,T.Y.Koo,Y.H.Jeong,Solid State Commum.134,299,(2005).
38. R.Seshadri and N.A.Hill,Chem.Mater.13,2892,(2001)
39. 楊哲勛,碩士論文,"射頻磁控濺鍍氧化鎳薄膜製程條件對顯微結構與電性及
光性之影響研究",(2001)。