| 研究生: |
許傑 Hsu, Chieh |
|---|---|
| 論文名稱: |
TCAD模擬評估低溫鍺/矽L型場效電晶體與鍺/矽互補式場效電晶體之效能 Benchmarking of Cryogenic Ge/Si LFET and Ge/Si CFET via TCAD Simulation |
| 指導教授: |
盧達生
Lu, Darsen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 微電子工程研究所 Institute of Microelectronics |
| 論文出版年: | 2025 |
| 畢業學年度: | 113 |
| 語文別: | 英文 |
| 論文頁數: | 106 |
| 中文關鍵詞: | TCAD 、低溫 、L型場效電晶體 、互補式場效電晶體 、鍺 、垂直式電晶體 、寄生電容 、操作頻率 、功耗 、晶面 、遷移率 |
| 外文關鍵詞: | TCAD, Cryogenic, L-shaped FET (LFET), Complementary FET (CFET), Germanium, Vertical FET (VFET), Parasitic Capacitance, Operation Frequency, Power Consumption, Surface Orientation, Mobility |
| 相關次數: | 點閱:12 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來,隨著人工智迅速發展,提升每單位面積之運算效能已成為關鍵,然而隨摩爾定律逐步逼近物理極限,僅以通道尺寸微縮已難獲顯著性能提升。為突破製程瓶頸,可從兩大方向著手:效能提升與面積微縮。
在效能提升方面,可透過低溫操作有效降低次臨界斜率、提升載子遷移率,以實現更高操作頻率及更低功耗,也可採用高遷移率材料,如鍺或 III–V 族化合物。面積微縮方面則可改變電晶體結構(如垂直式電晶體)或三維堆疊技術(如互補式場效電晶體 CFET)。
本論文綜合以上策略,選擇具垂直結構之鍺/矽 L 型場效電晶體(Ge/Si LFET)為研究對象,使用TCAD模擬其低溫下之電性表現,並與相同材料與幾何尺寸下與 CFET 進行比較。模擬結果顯示,LFET 中之垂直 Ge pMOS 可利用 (110) 晶面高載子遷移率優勢以及結構優勢,達成優於 CFET 的驅動電流與寄生電容抑制。
接著,本研究進一步探討 LFET 結構最佳化,包括側壁(spacer)與閘極氧化層介電常數、奈米片(sheet)數量與厚度等參數,最終提出分別適用於室溫與低溫操作的最佳結構設計,為低溫CMOS 元件之高效能應用提供具體指引。
In recent years, driven by the rapid advancement of artificial intelligence, the demand for high-performance semiconductor devices has surged. Enhancing computational efficiency per unit area has therefore become paramount. However, as Moore’s Law approaches its physical limits, mere channel-length scaling no longer yields significant performance gains. To overcome these fabrication bottlenecks, two principal strategies must be pursued: performance enhancement and footprint reduction.
Performance enhancement can be achieved through low-temperature operation, effectively reducing subthreshold swing and boosting carrier mobility to enable higher operating frequencies and lower power consumption, as well as by employing high-mobility materials such as germanium or III–V compounds. Footprint reduction, on the other hand, may be realized via novel transistor architectures (e.g., vertical transistors) or three-dimensional stacking technologies such as complementary FET (CFET).
This thesis adopts both approaches by focusing on the vertically oriented Germanium / Silicon L-shaped field-effect transistor (Ge/Si LFET). Using TCAD simulations, the low-temperature electrical characteristics of the Ge/Si LFET are evaluated and compared to those of a CFET with identical material composition and geometric dimensions. The results demonstrate that the vertical Ge pMOS channel, leveraging the high carrier mobility of the (110) crystal plane and its intrinsic structural advantages, delivers superior drive current and reduced parasitic capacitance relative to the CFET.
Subsequently, the study further explores structural optimization of the LFET, examining parameters such as spacer and gate-oxide dielectric constants, as well as the number and thickness of nanoscopic sheets. Based on these investigations, optimal device architectures for both room-temperature and cryogenic operation are proposed, offering concrete design guidelines for high-performance, cryogenic CMOS applications.
[1] K. S. Kim et al., “The future of two-dimensional semiconductors beyond Moore’s law,” Nat. Nanotechnol., vol. 19, no. 7, pp. 895–906, Jul. 2024, doi: 10.1038/s41565-024-01695-1.
[2] W. Cao et al., “The future transistors,” Nature, vol. 620, no. 7974, pp. 501–515, Aug. 2023, doi: 10.1038/s41586-023-06145-x.
[3] D. Hisamoto et al., “FinFET-a self-aligned double-gate MOSFET scalable to 20 nm,” IEEE Trans. Electron Devices, vol. 47, no. 12, pp. 2320–2325, Feb. 2000, doi: 10.1109/16.887014.
[4] C. Auth et al., “A 22nm high performance and low-power CMOS technology featuring fully-depleted tri-gate transistors, self-aligned contacts and high density MIM capacitors,” in 2012 Symposium on VLSI Technology (VLSIT), Jun. 2012, pp. 131–132. doi: 10.1109/VLSIT.2012.6242496.
[5] X. He et al., “Impact of aggressive fin width scaling on FinFET device characteristics,” in 2017 IEEE International Electron Devices Meeting (IEDM), Feb. 2017, p. 20.2.1-20.2.4. doi: 10.1109/IEDM.2017.8268427.
[6] N. Loubet et al., “Stacked nanosheet gate-all-around transistor to enable scaling beyond FinFET,” in 2017 Symposium on VLSI Technology, Jun. 2017, pp. T230–T231. doi: 10.23919/VLSIT.2017.7998183.
[7] J. Ryckaert et al., “The Complementary FET (CFET) for CMOS scaling beyond N3,” in 2018 IEEE Symposium on VLSI Technology, Jun. 2018, pp. 141–142. doi: 10.1109/VLSIT.2018.8510618.
[8] C.-Y. Yang et al., “First Demonstration of Heterogeneous L-shaped Field Effect Transistor (LFET) for Angstrom Technology Nodes,” in 2022 International Electron Devices Meeting (IEDM), San Francisco, CA, USA: IEEE, Dec. 2022, p. 20.2.1-20.2.4. doi: 10.1109/IEDM45625.2022.10019487.
[9] H. L. Chiang et al., “Cold CMOS as a Power-Performance-Reliability Booster for Advanced FinFETs,” in 2020 IEEE Symposium on VLSI Technology, Honolulu, HI, USA: IEEE, Jun. 2020, pp. 1–2. doi: 10.1109/VLSITechnology18217.2020.9265065.
[10] S. Alam, M. S. Hossain, S. R. Srinivasa, and A. Aziz, “Cryogenic memory technologies,” Nat. Electron., vol. 6, no. 3, pp. 185–198, Mar. 2023, doi: 10.1038/s41928-023-00930-2.
[11] S. Dissanayake, Y. Zhao, S. Sugahara, M. Takenaka, and S. Takagi, “Channel direction, effective field, and temperature dependencies of hole mobility in (110)-oriented Ge-on-insulator p-channel metal-oxide-semiconductor field-effect transistors fabricated by Ge condensation technique,” J. Appl. Phys., vol. 109, no. 3, p. 033709, Feb. 2011, doi: 10.1063/1.3537919.
[12] S. Takagi, A. Toriumi, M. Iwase, and H. Tango, “On the universality of inversion layer mobility in Si MOSFET’s: Part I-effects of substrate impurity concentration,” IEEE Trans. Electron Devices, vol. 41, no. 12, pp. 2357–2362, Dec. 1994, doi: 10.1109/16.337449.
[13] H. Oka, T. Inaba, S. Iizuka, H. Asai, K. Kato, and T. Mori, “Effect of Conduction Band Edge States on Coulomb-Limiting Electron Mobility in Cryogenic MOSFET Operation,” in 2022 IEEE Symposium on VLSI Technology and Circuits (VLSI Technology and Circuits), Honolulu, HI, USA: IEEE, Jun. 2022, pp. 334–335. doi: 10.1109/VLSITechnologyandCir46769.2022.9830505.
[14] A. Beckers, F. Jazaeri, and C. Enz, “Theoretical Limit of Low Temperature Subthreshold Swing in Field-Effect Transistors,” IEEE Electron Device Lett., vol. 41, no. 2, pp. 276–279, Feb. 2020, doi: 10.1109/LED.2019.2963379.
[15] H. Bohuslavskyi et al., “Cryogenic Subthreshold Swing Saturation in FD-SOI MOSFETs Described With Band Broadening,” IEEE Electron Device Lett., vol. 40, no. 5, pp. 784–787, May 2019, doi: 10.1109/LED.2019.2903111.
[16] A. Beckers, F. Jazaeri, and C. Enz, “Cryogenic MOS Transistor Model,” IEEE Trans. Electron Devices, vol. 65, no. 9, pp. 3617–3625, Sep. 2018, doi: 10.1109/TED.2018.2854701.
[17] K.-H. Kao et al., “Subthreshold Swing Saturation of Nanoscale MOSFETs Due to Source-to-Drain Tunneling at Cryogenic Temperatures,” IEEE Electron Device Lett., vol. 41, no. 9, pp. 1296–1299, Sep. 2020, doi: 10.1109/LED.2020.3012033.
[18] K. Xia, “Subthreshold Swing Modeling Down to Cryogenic Temperatures for MOSFET Compact Models,” IEEE Trans. Electron Devices, vol. 72, no. 1, pp. 68–74, Jan. 2025, doi: 10.1109/TED.2024.3499934.
[19] I. M. Hafez, G. Ghibaudo, and F. Balestra, “Assessment of interface state density in silicon metal‐oxide‐semiconductor transistors at room, liquid‐nitrogen, and liquid‐helium temperatures,” J. Appl. Phys., vol. 67, no. 4, pp. 1950–1952, Feb. 1990, doi: 10.1063/1.345572.
[20] Q. Rafhay, R. Clerc, G. Ghibaudo, and G. Pananakakis, “Impact of source-to-drain tunnelling on the scalability of arbitrary oriented alternative channel material nMOSFETs,” Solid-State Electron., vol. 52, no. 10, pp. 1474–1481, Oct. 2008, doi: 10.1016/j.sse.2008.06.035.
[21] Y. Zhang et al., “Characterization and Modeling of Native MOSFETs Down to 4.2 K,” IEEE Trans. Electron Devices, vol. 68, no. 9, pp. 4267–4273, Sep. 2021, doi: 10.1109/TED.2021.3099775.
[22] A. Beckers, F. Jazaeri, A. Grill, S. Narasimhamoorthy, B. Parvais, and C. Enz, “Physical Model of Low-Temperature to Cryogenic Threshold Voltage in MOSFETs,” IEEE J. Electron Devices Soc., vol. 8, pp. 780–788, 2020, doi: 10.1109/JEDS.2020.2989629.
[23] T.-Y. Huang, “Benchmarking of Cryogenic Ge/Si CFET with Consideration of Band-tail and Direct Source-to-drain Tunneling Effects via TCAD Simulation,” Master Thesis, 2024.
[24] J.-J. Tsai, “Investigation of Modeling & Optimization of Complementary Field Effect Transistors(CFET) via TCAD,” Master Thesis, 2023.
[25] C.-W. Chang, “Modeling & Optimization of L-shaped Complementary Field Effect Transistors (LFET) via TCAD,” Master Thesis, 2023.
[26] K.-H. Kao et al., “Numerical Simulations of Gate-Granularity- Induced Subthreshold Characteristics Deterioration of MOSFETs Magnified at Cryogenic Temperatures,” IEEE Access, vol. 12, pp. 169748–169754, 2024, doi: 10.1109/ACCESS.2024.3497933.
[27] “SentaurusTM Device User Guide.” Synopsys, Mar. 2024.
[28] M.-S. Kang et al., “Influence of substrate impurity concentration on sub-threshold swing of Si n-channel MOSFETs at cryogenic temperatures down to 4 K,” Jpn. J. Appl. Phys., vol. 62, no. SC, p. SC1062, Apr. 2023, doi: 10.35848/1347-4065/acb362.
[29] X.-R. Yu et al., “First Demonstration of Defect Elimination for Cryogenic Ge FinFET CMOS Inverter Showing Steep Subthreshold Slope by Using Ge-on-Insulator Structure,” in 2023 International Electron Devices Meeting (IEDM), San Francisco, CA, USA: IEEE, Dec. 2023, pp. 1–4. doi: 10.1109/IEDM45741.2023.10413801.
[30] D. A. Neamen, Semiconductor physics and devices: basic principles, 4. ed. New York, NY: McGraw-Hill, 2012.
[31] S. C. Jain and D. J. Roulston, “A simple expression for band gap narrowing (BGN) in heavily doped Si, Ge, GaAs and GexSi1−x strained layers,” Solid-State Electron., vol. 34, no. 5, pp. 453–465, May 1991, doi: 10.1016/0038-1101(91)90149-S.
[32] Synopsys, Inc., “Physical properties of Germanium (Ge).” [Online]. Available: http://www.ioffe.ru/SVA/NSM/Semicond/Ge/
[33] Xiaojun Yu, Shu-jen Han, Noah Zamdmer, Jie Deng, E. J. Nowak, and K. Rim, “Improved effective switching current (IEFF+) and capacitance methodology for CMOS circuit performance prediction and model-to-hardware correlation,” in 2008 IEEE International Electron Devices Meeting, San Francisco, CA, USA: IEEE, Dec. 2008, pp. 1–4. doi: 10.1109/IEDM.2008.4796666.
[34] M. H. Na, E. J. Nowak, W. Haensch, and J. Cai, “The effective drive current in CMOS inverters,” in Digest. International Electron Devices Meeting, Feb. 2002, pp. 121–124. doi: 10.1109/IEDM.2002.1175793.
[35] T. Song, “Many-Tier Vertical GAAFET (V-FET) for Ultra-Miniaturized Standard Cell Designs Beyond 5 nm,” IEEE Access, vol. 8, pp. 149984–149998, 2020, doi: 10.1109/ACCESS.2020.3015596.
[36] C. Hu, Modern Semiconductor Devices for Integrated Circuits. Upper Saddle River, N.J: Pearson, 2009.
[37] C. P. Auth and J. D. Plummer, “Scaling theory for cylindrical, fully-depleted, surrounding-gate MOSFET’s,” IEEE Electron Device Lett., vol. 18, no. 2, pp. 74–76, Feb. 1997, doi: 10.1109/55.553049.
[38] S. Sharma, S. Sahay, and R. Dey, “Parasitic Capacitance Model for Stacked Gate-All-Around Nanosheet FETs,” IEEE Trans. Electron Devices, vol. 71, no. 1, pp. 37–45, Jan. 2024, doi: 10.1109/TED.2023.3281530.
[39] G. Yeap et al., “2nm Platform Technology Featuring Energy-Efficient Nanosheet Transistors and Interconnects Co-Optimized with 3DIC for AI, HPC and Mobile SoC Applications,” in 2024 IEEE International Electron Devices Meeting (IEDM), Feb. 2024, pp. 1–4. doi: 10.1109/IEDM50854.2024.10873475.
[40] T. Y. Chan, A. T. Wu, P. K. Ko, and C. Hu, “Effects of the gate-to-drain/source overlap on MOSFET characteristics,” IEEE Electron Device Lett., vol. 8, no. 7, pp. 326–328, Jul. 1987, doi: 10.1109/EDL.1987.26647.
[41] X.-R. Yu, “The Study on the Fabrication of Germanium-Based Complementary Stacked Transistors and Cryogenic Temperature Complementary Transistors through Wafer Bonding Technology,” Doctor Dissertation, 2025.
[42] X.-R. Yu, J. Y. Hung, T.-C. Cho, W. C.-Y. Ma, Y.-J. Lee, and Y.-H. Wang, “Plasma-Free Nitridation for MOSCAPs and GeOI GAAFETs Utilizing Cyclic Passivation of Ozone/Hydrazine With Low Leakage Current, Low Interface Traps, and High Thermal Stability,” IEEE Trans. Electron Devices, vol. 72, no. 4, pp. 1597–1603, Apr. 2025, doi: 10.1109/TED.2025.3545401.
[43] S.-T. Hsu, “Benchmarking of Cryogenic GeOI GAA/FinFETs Performance via a Novel Compact Model Extraction Methodology,” Master Thesis, 2025.
校內:2030-06-30公開