簡易檢索 / 詳目顯示

研究生: 胡福堯
Hu, Fu-Yao
論文名稱: 超高性能纖維混凝土細長柱之無偏心與偏心軸壓行為研究
Behavior of UHPFRC slender columns under concentrical and eccentrical loading
指導教授: 洪崇展
Hung, Chung-Chan
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 303
中文關鍵詞: 細長柱無偏心軸壓偏心軸壓超高性能纖維混凝土
外文關鍵詞: slender column, concentrical loading, eccentrical loading, UHPFRC
相關次數: 點閱:139下載:12
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 現今結構物,因應許多特殊用途,常會有細長柱設計之需求。而細長柱受壓時,會引發細長效應,產生額外之側向變形,影響柱的穩定性和強度折減。而超高性能纖維混凝土(Ultra High Performance Fiber Reinforced Concrete,UHPFRC)可以有效縮小構件尺寸,且因於混凝土中添加鋼纖維,鋼纖維具有橋聯效應之特性,可有效在主要裂縫開裂之前,吸收變形之能量,轉換為多重均勻之細微裂縫之破壞模式,強化結構物之能力。因此本文研究利用此新型混凝土,製作十支超高性能纖維混凝土(UHPFRC)與九支超高性能混凝土(UHPC)細長柱,以兩端鉸接,無側向位移,施加無偏心或偏心軸壓,對兩種不同縱向鋼筋體積比、三種不同橫向鋼筋比與兩種不同鋼纖維體積比,探討使用鋼纖維是否可以增強柱之圍束能力、降低橫向鋼筋比,放大箍筋間距,與取代繫筋。由實驗結果得知,超高性能纖維混凝土(UHPFRC)細長柱,不僅具有良好之力學性能,同時具有優越的損壞容忍力。添加1.5%體積比鋼纖維,可允許細長柱在箍筋間距d/4下,取代雙向繫筋,而若在配置雙向繫筋下,可允許放大箍筋間距至d/2。

    Today's structures are designed for many special applications with slender columns.When the slender column is subjected to axial forces, there will be slender effect, resulting in additional lateral deformation.And the slender effect affects the stability and strength of the column. Ultra-high performance fiber reinforced concrete(UHPFRC) can effectively reduce the cross-section of the column.And because of the addition of steel fiber in concrete, steel fiber has the characteristics of bridging effect.Steel fiber can effectively absorb the deformation of the energy, before the major cracks and makeing the failure mode into a multiple uniform fine crack, to strengthen the structure of the ability. Therefore, this study produced 10 ultra-high performance fiber reinforced concrete(UHPFRC) slender columns and 9 ultra-high performance concrete(UHPC)slender columns. The Specimen is hinged at both ends without sway and applied concentrical and eccentrical loading. For the two different longitudinal reinforcement ratio,three different transverse reinforcement ratio and two different steel fiber volume ratio, to explore whether using of steel fiber can enhance the capacity of the confinement, to reduce the lateral reinforcement ratio、increases the spacing of hoop and instead of crosstie. From the experimental results, it is known that ultra-high performance fiber reinforced concrete (UHPFRC) slender columns not only have good mechanical properties, but also have excellent damage tolerance. The addition of 1.5% by volume of steel fiber allows the slender columns to replace the tie under the spacing of hoop is d/4, and under the biaxial crosstie, the hoop of spacing can be allowed to d/2.

    摘要 I 誌謝 VII 目錄 VIII 第一章 緒論 1 1.1 研究動機 1 1.2 研究目的 1 1.3 研究方法 2 第二章 文獻回顧 3 2.1 高性能纖維混凝土 3 2.2 超高性能纖維混凝土 4 2.3 鋼筋混凝土柱 5 2.3.1 柱軸向強度 5 2.3.2 圍束效應 6 2.3.3 圍束設計規範 12 2.4 細長柱分析與設計 13 2.4.1 桿端無側移與側移構架之定義 13 2.4.2 細長柱之細長比定義 13 2.4.3 二次彎矩效應 14 2.4.4 對稱載重下鉸接柱之彎矩放大 16 2.4.5 桿端無相對側移之細長柱 17 2.4.6 韌性指標 19 2.5 無偏心軸壓柱 20 2.6 偏心軸壓柱 29 2.7 細長柱 31 第三章 試驗規劃與設置 33 3.1 試體規劃 33 3.2 試體設計 33 3.2.1 試體尺寸 36 3.2.2 斷面配置 38 3.2.3 箍筋間距 39 3.2.4 試驗配比 41 3.2.5 加載方式 42 3.3 試驗儀器與設備 44 3.3.1 測試系統 44 3.3.2 內部量測系統 46 3.3.3 外部量測系統 47 3.3.4 混凝土拌合機具 49 3.4 柱試體製作 49 3.4.1 應變計黏貼 49 3.4.2 柱試體鋼筋綁紮 52 3.4.3 模板組立 54 3.4.4 超高性能纖維混凝土拌和 56 3.4.5 試體澆置 57 3.4.6 拆模與養護 59 3.5 試驗流程 60 3.5.1 試驗前置 60 3.5.2 試體架設 60 3.5.3 架設量測系統 64 3.5.4 試驗進行與結束 66 3.6 材料試驗 66 3.6.1 圓柱抗壓試驗 66 3.6.2 混凝土拉力試驗 74 3.6.3 鋼筋拉力試驗 81 3.7 數據處理方法 82 3.7.1 柱試體測試區之軸向位移 82 3.7.2 柱試體測試區之勁度 85 3.7.3 柱試體測試區之降伏點 86 3.7.4 柱試體測試區之側向位移 86 3.7.5 柱試體測試區之二次彎矩 87 3.7.6 柱試體測試區之鋼筋應變值 88 3.7.7 柱試體測試區之保護層剝落面積 88 第四章 無偏心柱軸壓試驗結果 89 4.1 無偏心柱軸壓試驗行為 89 4.1.1 試體編號:H5T0-F0-E0 89 4.1.2 試體編號:H5T5-F0-E0 94 4.1.3 試體編號:H5T0-F150-E0 99 4.1.4 試體編號: H5T5-F75-E0 103 4.1.5 試體編號: H10T0-F0-E0 108 4.1.6 試體編號:H10T10-F0-E0 112 4.1.7 試體編號:H10T0-F150-E0 116 4.1.8 試體編號: H10T10-F150-E0 121 4.1.9 試體編號: H0T0-F0-E0 128 4.1.10 試體編號: H0T0-F75-E0 132 4.1.11 試體編號: H0T0-F150-E0 136 4.1.12 破壞模式 141 4.2 無偏心柱軸壓試驗行為討論 146 4.2.1 側向位移 147 4.2.2 軸向強度 151 4.2.3 軸向應變 155 4.2.4 彎矩強度 157 4.2.5 橫向膨脹(Dilation) 158 4.2.6 縱向鋼筋 160 4.2.7 橫向鋼筋 162 4.2.8 韌性行為 168 4.3 無偏心軸壓柱試體分析與比較 170 4.3.1 軸向強度之預測 170 4.3.2 軸力彎矩互制圖 175 第五章 偏心柱軸壓試驗結果 182 5.1 各偏心柱軸壓試驗行為 182 5.1.1 試體編號: H5T0-F0-E26 182 5.1.2 試體編號: H5T5-F0-E26 187 5.1.3 試體編號:H5T0-F150-E26 193 5.1.4 試體編號: H5T5-F75-E26 199 5.1.5 試體編號: H10T0-F0-E26 205 5.1.6 試體編號: H10T10-F0-E26 210 5.1.7 試體編號:H10T0-F150-E26 216 5.1.8 試體編號: H10T10-F150-E26 222 5.1.9 破壞模式 230 5.2 偏心柱軸壓試驗行為討論 234 5.2.1 側向位移 234 5.2.2 軸向強度 239 5.2.3 軸向應變 242 5.2.4 彎矩強度 245 5.2.5 縱向鋼筋 247 5.2.6 橫向鋼筋 253 5.2.7 軸力彎矩互制圖 260 5.2.8 韌性行為 264 5.3 偏心柱軸壓分析與比較 268 5.3.1 彎矩強度之預測 268 第六章 綜合討論 274 6.1 軸向強度 274 6.1.1 未添加鋼纖維之試體 274 6.1.2 添加鋼纖維之試體 275 6.2 軸向應變 276 6.2.1 未添加鋼纖維之試體 276 6.2.2 添加鋼纖維之試體 279 6.3 側向位移 281 6.3.1 未添加鋼纖維之試體 281 6.3.2 添加鋼纖維之試體 283 6.4 破壞模式 285 6.4.1 未添加鋼纖維之試體 285 6.4.2 添加鋼纖維之試體 286 6.5 韌性行為 288 6.5.1 未添加鋼纖維之試體 288 6.5.2 添加鋼纖維之試體 289 第七章 結論與建議 292 7.1 結論 292 7.2 建議 297 參考文獻 298

    [1] 王又德(2015),高強度鋼纖維鋼筋混凝土柱軸壓及韌性行為研究,國立臺灣大學工學院土木工程學系碩士論文。
    [2] 李和昇(2016),超高性能纖維混凝土之拉伸硬化行為與結構構件之撓曲行為,國立成功大學土木工程研究所碩士論文。
    [3] 吳奕翰(2016),超高性能纖維混凝土結構構件之剪力行為與設計探討,國立成功大學土木工程研究所碩士論文。
    [4] 洪崇展,戴艾珍,顏誠皜,溫國威,張庭維(2017),新世代多功能性混凝土材料-高性能纖維混凝土,土木水利.第44卷第1期,頁33-51。
    [5] 洪崇展,曾柏庭,游文吉,黃忠良(2011) 使用高性能纖維混凝土於耦合結構牆以提升地震行為表現之有效性. 結構工程. 26(4), pp. 3-16。
    [6] 程曄伸 (2006),高流動性混凝土柱受偏心軸力作用之行為,國立中興大學土木工程學系碩士論文。
    [7] 陳玥廷(2013),材料組成比例對超高性能纖維混凝土之工作性與力學性質之影響,國立中央大學土木工程研究所碩士論文。
    [8] 陳玥廷(2013),材料組成比例對超高性能纖維混凝土之工作性與力學性質之影響,國立中央大學土木工程研究所碩士論文。
    [9] 陳弘绮(2015),高強度鋼筋加勁超高性能纖維混凝土低矮型剪力牆之反覆載重行為,國立中央大學土木工程研究所碩士論文。
    [10] Abul K. Azad and Mohammed A. Al-Osta.(2014) Capacity of Corrosion-Damaged Eccentrically Loaded Reinforced Concrete Columns. ACI Materials Journal,111, No. 6.
    [11] ACI Committee. (2014). Building code requirements for structural concrete (ACI 318-14) and commentary (ACI 318R-14). American Concrete Institute.
    [12] ACI Innovation Task Group 4(2007)Report on Structural Design and Detailing for High-Strength Concrete in Moderate to High Seismic Applications (ITG-4.3R-07),American Concrete Institute.
    [13] Afefy Hamdy M, (2012). Ultimate flexural rigidity of reinforced concrete beam-column members.Structures and Buildings, Volume 165 Issue SB6.
    [14] Afefy Hamdy M., El-Tony M. El-Tony. (2016). Simplified Design Procedure for Reinforced Concrete Columns Based on Equivalent Column Concept. International Journal of Concrete Structures and Materials, Vol.10, No.3, pp.393-406.
    [15] Aoude Hassan, Cook William D, and Mitchell Denis (2009) Behavior of Columns Constructed with Fibers and Self-Consolidating Concrete. ACI Structural Journal, 106, No. 3.
    [16] Awati Mahesh, Khadiranaikar R.B.. (2012). Behavior of concentrically loaded high performance concrete tied columns. Engineering Structures 37, 76-87.
    [17] Campione Giuseppe, Fossetti Marinella, Papia Maurizio. (2010). Behavior of Fiber-Reinforced Concrete Columns under Axially and Eccentrically Compressive Loads. ACI Structural Journal, Vol.107, No.3.
    [18] Cusson Daniel and Paulter Patrick.(1994).Strsss-Strain Model For Confined High Srerngth Concrete. Journal of Structural Engineering.121(3).
    [19] Foster, S. J. (2001). On behavior of high-strength concrete columns:Cover spalling, steel fibers, and ductility. ACI Struct. J. 98(4), 583-589.
    [20] Foster Stephen J. , Attard Mario M. (2001), Strength and Ductility of Fiber-Reinforced High-Strength Concrete Columns. Journal of Structural Engineering, Vol.127, No. 1.
    [21] Galano Luciano, Vignoli Andrea. (2008). Strength and Ductility of HSC and SCC Slender Columns Subjected to Short-Term Eccentric Load. ACI Structural Journal, V. 105, No. 3.
    [22] Hung C. C. and Chen Y. S. (2016), Innovative ECC Jacketing for Retrofitting Shear-Deficient RC Members,” Construction & Building Materials. 111, pp. 408-418.
    [23] Hung C. C. and Chueh C. Y. (2016), Cyclic Behavior of UHPFRC Flexural Members Reinforced with High-Strength Steel Rebar, Engineering Structures, 122, pp.108-120.
    [24] Hung C. C. and El-Tawil, S. (2011), Seismic Behavior of a Coupled Wall System with HPFRC Materials in Critical Regions, ASCE Journal of Structural Engineering ASCE. 137(12), pp.1499-1507.
    [25] Hung C. C. and El-Tawil, S. (2011), Hybrid Rotating/Fixed-Crack Model for High Performance Fiber Reinforced Cementitious Composites. ACI Materials Journal. 107(6), pp.569-577.
    [26] Hung C. C, Li H., and Chen H.C. (2017), High-strength Steel Reinforced Squat UHPFRC Shear Walls: Cyclic Behavior and Design Implications. Engineering Structures. 141, pp.59-74.
    [27] Hung C. C. and Li S. H. (2013), Three-dimensional Model for Analysis of High Performance Fiber Reinforced Cement-based Composites, Composites Part B: Engineering, 45, pp.1441-1447.
    [28] Hung C. C. and Sherif El-Tawil (2010), Hybrid Rotating/Fixed-Crack Model for High-Performance Fiber-Reinforced Cementitious Composites, ACI Materials Journal, No.107-M64, pp.1-9.
    [29] Hung C. C. and Su Y. F. (2017), Mechanical properties and self-healing evaluation of strain-hardening cementitious composites with high volumes of hybrid pozzolan materials. Composites Part B: Engineering. (accept)
    [30] Hung C. C., Su Y. F.and Hung H. H. (2017), Impact of natural weathering on medium-term self-healing performance of fiber reinforced cementitious composites with intrinsic crack-width control capability. Cement and Concrete Composites 80, pp.200-209.
    [31] Hung C. C. and Su Y. F. (2016), Medium-term self-healing evaluation of Engineered Cementitious Composites with varying amounts of fly ash and exposure durations, Construction and Building Materials, 118, pp. 194-203.
    [32] Hung C. C. and Su Y. F. (2013), On Modeling Coupling Beams Incorporating Strain-hardening Cement-based Composites, Computers and Concrete, 12(4), pp.243-259.
    [33] Hung C. C. , Su Y. F. and Yu K. H. (2013), Modeling the shear hysteretic response for high performance fiber reinforced cementitious composites, Construction and Building Materials, 41, pp. 37-48.
    [34] Hung C. C. Yen, W. M. and Yu, K. H. (2016), Vulnerability and Improvement of Reinforced ECC Flexural Members under Displacement Reversals: Experimental Investigation and Computational Analysis, Construction & Building Materials, 107, pp.287-298.
    [35] Hung C. C. and Yen W. M. (2014), Experimental evaluation of ductile fiber reinforced cement-based composite beams incorporating shape memory alloy bars, Procedia Engineering, 79, pp.506-512.
    [36] Hung C. C. , Tseng B. T. , You W. G. and Huang, J. L. (2011) , Effectiveness of Using High Performance Fiber Reinforced Concrete in Coupled Structural Walls for Improving Seismic Performance, Structural Engineering, 26(4), pp. 3-16.
    [37] Hosinieh Milad Mohammadi, Aoude Hassan, Cook William D., Mitchell Denis (2015). Behavior of ultra-high performance fiber reinforced concrete columns under pure axial loading. Engineering Structures.99.388-401.
    [38] Lee Jae-Hoon, Son Hyeok-Soo.(2000). Failure and Strength of High-Strength Concrete Columns Subjected to Eccentric Loads. ACI Structural Journal, Vol. 97, No. 1.
    [39] Legeron Frederic and Paultre Patrick.(2003). Uniaxial Confinement Model for Normal- and High-Strength Concrete Columns. J.Struct.Eng.129:241-252.
    [40] Malikl Adnan R., Foster Stephen J.(2008) Behaviour of Reactive Powder Concrete Columns without Steel Ties. Journal of Advanced Concrete Technology, Vol. 6, No. 2, P 377-386.
    [41] Mander J. B., Priestley 1 M. J. N., and Park R. (1988) Observed stress-strain behavior of confined concrete. J. Struct. Eng.114(8): 1827-1849.
    [42] Paultre P. , Légeron F.(2008) , Confinement Reinforcement Design for Reinforced Concrete Columns. J. Struct. Eng.134:738-749.
    [43] Paultre P. , Eid R. , Langlois Y. , and Lévesque Y. (2010), Behavior of Steel Fiber-Reinforced High-Strength Concrete Columns under Uniaxial Compression. J. Struct. Eng.136:1225-1235.
    [44] Perceka Wisena, Liao Wen-Cheng,Wang Yo-de. (2016). High Strength Concrete Columns under Axial Compression Load: Hybrid Confinement Efficiency of High Strength Transverse Reinforcement and Steel Fibers. Materials 9, 264.
    [45] Rangan B. Vijaya.(1990). Strength of Reinforced Concrete Slender Columns. ACI Structural Journal, V. 87, No.1.
    [46] Sarker Prabir Kumar, Rangan B. Vijaya.(2003). Reinforced Concrete Columns under Unequal Load Eccentricities. ACI Structural Journal, Vol. 100, No. 4.
    [47] Shin H. O. ; Yoon Y. S. , Lee S. H. ; Cook W. D. ; and Mitchell D.(2015)Effect of Steel Fibers on the Performance of Ultrahigh-Strength Concrete Columns. J. Mater. Civ. Eng 27.
    [48] Shin H. O., Yoon Y. S., Cook W. D., and Mitchell D.(2015) Effect of Confinement on the Axial Load Response of Ultrahigh-Strength Concrete Columns. Struct. Eng.141.
    [49] Tokgoz Serkan, Dundar Cengiz, Tanrikulu A. Kamil. (2012), Experimental behaviour of steel fiber high strength reinforced concrete and composite columns. Journal of Constructional Steel Research 74, 98-107.
    [50] Wille K, El-Tawil S, Naaman AE. (2014) Properties of strain hardening ultra high performance fiber reinforced concrete (UHPFRC) under direct tensile loading. Cement & Concrete Composites.48:53-66.
    [51] Xu Chengshun, Liu Jin, Ding Zixing, Li Dong, Du Xiuli, (2016). Size effect tests of high-strength RC columns under eccentric loading. Engineering Structures 126, 78-91.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE