| 研究生: |
鍾淑芬 Chung, Shu-Fen |
|---|---|
| 論文名稱: |
Phorbol Ester 處理HeLa細胞後凝血酶調節素轉錄活性調控的分析 Transcriptional Regulation of Thrombomodulin by Phorbol Ester in HeLa cells |
| 指導教授: |
張文昌
Chang, Wen-Chang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 藥理學研究所 Department of Pharmacology |
| 論文出版年: | 2006 |
| 畢業學年度: | 94 |
| 語文別: | 中文 |
| 論文頁數: | 71 |
| 中文關鍵詞: | 凝血酶調節素 |
| 外文關鍵詞: | HeLa cell, Phorbol Ester, Thrombomodulin |
| 相關次數: | 點閱:109 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
凝血脢調節素(Thrombomodulin,TM)以下簡稱TM。廣泛存在於細胞表面如單核球、嗜中性血球、內皮細胞、平滑肌細胞、及腫瘤細胞,在血液凝結的調控上扮演一個很重要的角色。文獻報導指出,human umbilical vein endothelial cells (HUVEC)處理cytokines如endotoxin、tumor necrosis factor 及interleukin-1 β會使TM mRNA的表現量及活性下降。而tumor-promoting phorbol esters (PMA)、histamine、retinoic acid 或是活化cAMP的藥物會促使TM mRNA表現上升。報導指出,TM啟動區-1531至-1536bp上RARE (retinoid acid responsive element)及-123至-135bp上兩個Sp1結合位置對retiond acid調控TM之mRNA的表現是重要的。
報導指出PMA對TM的影響有部份是透過活化cyclooxygenase-2 (COX-2)的表現。但是對於PMA如何調控TM基因還不清楚。COX-2受到抑制後,PMA對TM的誘導也會被抑制。於是在本篇論文中,主要是探討PMA對TM基因調控。
由北方墨點法實驗結果顯示,PMA誘導TM呈現時間及劑量相關性的增加,5 nM的PMA處理HeLa細胞在24小時內TM mRNA達到最高表現。另一方面,用一系列不同長度的5’端段切的TM啟動區報導基因進行分析,分別將TM-181/+2、TM-119/+2、TM-55/+2、TM-27/+2與TM-245/+2比較其報導基因活性分別下降64%、88%、93%、97% 顯示出-245至-55bp區域含有調控TM 基因表現的活性。點突變報告基因分析發現,此區域所包含的第三個Sp1 site (-135至-141bp)是最重要的,其次是第二個Sp1 site (-201至-207bp),且TM啟動區-245至-119bp上三個Sp1 site對基因表現的調控具有協同作用。而在PMA的調控方面,-245至-55bp區間有2.4倍的PMA誘導倍率。利用點突變報導基因分析,發現只有同時將三個sp1 site同時突變,才會對PMA誘導有輕微抑制。此外,凝膠電泳DNA位移測定實驗的結果顯示出在-245至-119bp區間上者三個Sp1 site皆有Sp1蛋白質的結合,而我們所設計的Sp1 site點突變後,Sp1的結合也消失了。這也顯示出PMA調控TM表現的機制中,Sp1不是主要調控的因子。但是在TM的基楚調空中,Sp1扮演非常重要的角色。
Thrombomodulin (TM), a glycoprotein expressed on the endothelial cell surface, plays an important role in the regulation of blood coagulation. It was also demonstrated that TM was widely distributed on monocytes, neutrophils, epithelial cells, smooth muscle cells and tumor cells. TM mRNA expression is down-regulated in human umbilical vein endothelial cells (HUVEC) when they are incubated with endotoxin, tumor necrosis factor or interleukin-1 β and up-regulated with tumor-promoting phorbol esters, histamine, retinoic acid (t-RA) and reagents which increase intracellular cAMP. Moreover, recent study indicated that two genomic DNA regions, the DR4 site (-1531 to –1516bp) and the Sp1-binding site (-119 to -135bp) are required for t-RA-dependent augmentation of TM gene expression.
Some reports indicate that PMA mediates TM function by activating COX2 but the gene controlling its expression is to be defined. Once COX2 is suppressed, the induction effect of PMA to TM expression is also inhibited. In this study, the regulation mechanism of PMA-induced TM gene expression in HeLa cells was stuied.
By Northern blot analysis, we found that the TM mRNA expression pattern has a dose- and time-dependent manner after PMA treatment in HeLa cells. PMA(5nM) increased TM mRNA expression to its maximal level after 24th hours treatment. Analysis of the 5’ deletion mutants revealed that the 5’flanking region of TM promoter sequence between –245bp and –55bp was involved in gene expression. Reporter activities of TM-181/+2, TM-119/+2, TM-55/+2 and TM-27/+2 were decreased by 36%, 12%, 7% and 3% respectively compared with TM-245/+2(100%). Furthermore, analysis of point mutation of TM promoter indicated that Sp1 site (-135 to -141bp) was the most important site for TM basal activity, the by the Sp1 site (-201 to -207bp) was the next important. Three Sp1 sites in the TM promoter region from–245 to -119bp have a synergetic effect for TM basal activity. Finally, TM promoter region (-245 to -119bp) was found to have contribution for PMA induction up to 2.4-folds. However, from the results of point mutation experiment, we found only double Sp1 site mutant has minor effect on PMA-dependent TM gene expression. Beside, the result of EMSA indicated that Sp1 protein binds to three Sp1 site between–245 to -119bp, and point mutant of Sp1 site also disrupted this binding. This result all indicated that Sp1 is not very important in the regulation mechanism of PMA-induced TM expression. But Sp1 plays a major role in the basal transcriptional regulation of TM.
Archipoff, G., Beretz, A., Freyssinet, J. M., Klein-Soyer, C., Brisson, C., and Cazenave, J.P. Heterogeneous regulation of constitutive thrombomodulin or inducible tissue factor activities on the surface of human saphenous-ven.. Biochem. J. 273, 679-684, 1991
Bernd, I., Rashmi, S.,. Rafal, P,. and Mark, Z. The thrombomodulin-protein C system is essential for the maintenance of pregnancy. Nature Medicine 9, 331-337, 2003
Conway, M., Wouwer, M., Pollefeyt, S., Jurk, K., Aken, H., DeVariese, A., Weitz, I., Weiler,
H., Hellings, W., Schaeffer, P., Herbert, M., Collen, D., and Theilmeier, G. J. Exp. Med. 196, 565-77, 2003
Connway, M., Pollefeyt, S, Collen., D., and Mosonyi, M. The amino terminal lectin-like formation of thrombomodulin is required for constitutive endocytosis. Blood 89, 652-61, 1997
Christiab, S., Ahorn, H., Koehler, A., Isenhaber, F., Rodi, P., Garin-Chesa, P., Park, J.E., Rettig, W.J., and Lenter, M.C. Molecular cloning and characterization of endosialin, a C-type lectin-like cell surface receptor of tumor endothelium. J. Biol. Chem. 276, 7408-14, 2001
Collins, C.L., Ordonez, N.G., Schaefer, R., Cook, C.D., Xie, S.S., Granger, J., Hsu, P.L., Fink, L.,. and Hsu, S.M. Thrombomoduloin expression in malignant pleural mesothelioma and pulmonary adnocarcinoma. Am. J. Pathol. 141, 827-33, 1992
Dittman, W.A., and Majerus, P.W. Structure and function of Thrombomodulin: a natural anticoagulant. Blood 75, 329-36, 1990
Dietmar, A., Claudia, N., Christina, K., Jurgen, O., Ulrike, K., Haraid, O., and Bohdan, W. Ets transcription factor binding site is required for positive and TNF-a induced negative promoter regulation. Nucleic Acid Res. 21, 5636-5643, 1993
Dorit, R., and Marcelo, G.K. New insights into the regulation of protein kinase C and novel phorbol ester receptors. FASEB J. 13, 1658-1677, 1999
Dittman, W.A., Nelson, S.C., Greer, P,K., Horton, E.T., Palomba, M.L., and McCachren, S.S. Characterization of thrombomodulin expression in response to retinoic acid and identification of a retinoic acid response element in the human thrombomodulin gene. J. Biol. Chem. 269, 16925-16932, 1994
Edward, M., Conway, M., Van de Wouwer, Saskia, P, Kerstin, J., and Hugo Van Aken. The lectin-like domain of thrombomodulin confers protection from neutrophil-mediated tissure damage by suppressing adhesion molecule expression via nuclear factor kB and mitogen-activated protein kinase pathways. J. Exp. Med. 196, 565-577, 2002
Esmon, C.T., and Owen, W.G. Identification of as endothelial cell cofactor for thrombin-catalyzed activation of protein C. Proc. Nat. Acad. Sci. U. S. A. 78, 2249-52, 1981
Flem, L., Picard, V., Emmerich, J., Gandrille, S., Fiessinger, J.N., Aiach, M., and Alhenc-Gelas, M. Mutations in promotor region of thrombomodulin and venous thromboembolic disease. Arterioscler Thromb. Vasc. Biol. 19, 1098-104, 1999
Hamatake, M., Ishida, T., Mitsudomi, T., Akazawa, K., and Sugimachi, K. Prognostic value and clinicopathological correlation of thrombomodulin in aquamous cell carcinoma of the human lung. Clin. Cancer. Res. 2, 763-6, 1996
Hidemi, I., Keiichiro, K., Shuichi, H., and Mutsuyoshi, K. Oxidized Low Density Lipoprotein Reduces Thrombomodulin Transcription in Cultured Human Endothelial Cells through Degradation of the Lipoprotein in Lysosomes. Biochem. J. 281, 149–154, 1992
Horie, S., Kizaki, K., Ishii, H., and Kazama, M. Retinoic acid stimulates expression of thrombomodulin, a cell surface anticoagulant glycoprotein, on human endothelial cells. Differences between up-regulation of thrombomodulin by retinoic acid and cyclic AMP. Biochemical J. 2817, 149-154, 1992
Hosaka, Y., Higuchi, T., Tsumagari, M., and Ishii, H. Inhibition of invasion and experimental metastasis of murine melanoma cells by soluble thrombomodulin. Cancer Lett. 161, 231-40, 2000
Ishii, H., Horie, S., Kizaki, K., and Iqbal, S. Role of thrombomodulin in cancer biology. The Breast 9, 264-266, 2001
Ireland, H., Kunz, G., Kyriakoulis, K., Stubbs, P., and Lane, D.A. Thrombomodulin gene mutations associated with myocardial infarction. Circulation 96, 15-18, 1997
Jackson, S.P., MacDonald, J.J., Lees-Miller, S. and Tjian, R. GC box binding induces phosphorylation of Sp1 by a DNA-dependent protein kinase. Cell 63, 155–165, 1990
Jones, K.A., Kadonaga, J.T., Rosenfeld, P.J., Kelly, T.J., and Tjian, R. A. Cellular DNA-binding protein that activates eukaryotic transcription and DNA replication. Cell 16, 79-99, 1987
Jongstra, J., Reudelhuber, T.L., Oudet, P., Benoist, C., Chae, C.C., Jeltsch, J.M., Mathis, D.L. and Chambon, P nduction of altered chromatin structures by simian virus 40 enhancer and promoter elements. Nature 307, 708–714, 1984
Karlseder, J., Rotheneder, H and Wintersberger, E. Interaction of Sp1 with the growth- and cell cycle-regulated transcription factor E2F. Mol. Cell. Biol. 16, 1659–1667, 1996
Lin, S.Y., Black, A.R., Kostic, D., Pajovic, S., Hoover, C.N. and Azizkhan, J.C. Cell cycle-regulated association of E2F1 and Sp1 is related to their functional interaction. Mol. Cell. Biol. 16, 1668–1675, 1996
Li, R., Knight, J.D., Jackson, S.P., Tjian, R. and Botchan, M. Direct interaction between Sp1 and the BPV enhancer E2 protein mediates synergistic activation of transcription. Cell 65, 493–505, 1991
Moor, K.L., Andreoli, S.P., Esmon, N.L., Esmon, C.T., and Bang, N.U. Endotoxin enhances-tissue factor and suppresses thrombomodulin expression of human vascular endothelium in vitro. J. Clin. Invest. 79, 124-130, 1987
Maruyama, I., Bell, C.E., and Majerus, P.W. Thrombomodulin found on endothelium of arteries, veins, capillaries, and lymphatics, and on syncytiotrophoblast of human placenta. J. Cell. Biol. 10,363-371, 1985
Mc Cachren, S.S., Diggs, J., Weinberg, J.B., and Dittman, W.A. Thrombomodulin expression by human blood monocytes and human synovial lining macrophages. Blood, 78,3128-3132, 1991
Nakazawa, F., Koyama, T., Shibamiya, A., and Hirosawa, S. Characterization of thrombomodulin gene mutations of the 5’-regulatory region. Atherosclerosis, 164, 385-7, 2002
Nawroth, P.P., and Stern, D.M. Modulation of endothelian cell hemostati properties by tumor necrosis factor. J. Exp. Med. 163, 740-745, 1986
Nawroth, P.P., Handley, D.A., Esmon, C.T., and Stern, D.M. Interleukin 1 induces endothelial cell procoagulant while prevent activation of human platelets. Proc. Natl. Acad. U. S. A. 83, 3460-3464, 1986
Oikawa, T., Kushuhara, M., Ishikawa, S., Hitomi, J., Kono, A., Iwanaga, T., and Yamaguchi, K. Production of endothelin-1 and thrombomodulin by human pancreatic cancer cells. Br. J. Cancer. 69, 1059-64, 1984
Owen, W.G., and Esmon, C.T. Functional properties of an endothelial cofactor for thrombin-catalyzed activation of protein C. J. Biol. Chem. 256, 5532-5, 1981
Ogawa, H., Yanagi, M., Matsumoto, H., Nishijima, H., Shimotakahara, T., Aikou, T., and Sato, E. Expression of thrombomodulin in aquamous cell carcinoma of the lung: Its relationship to lymph node metastasis and prognosis of the patients. Cancer Lett. 149, 95-103, 2000
Ogawa, S., Gerlach, H., Esposito, C., Pasagian-Macaulay, A., Brett, J., and Sterm, D. Hypoxia modulates the barrier and coagulant function of cultured bovine endothelium: increased monolayer permeability and induction of procoagulant properties. J. Clin. Invest. 85, 1090-1098, 1990
Ohji, T., Urano, H., Shirahata, A., Yamagishi, M., Higashi, K., Gotoh, S., and Karasaki, Y. Transforming growth factor beta a and beta 2 induce down modulation of thrombomodulin in human umbilical vein endothelial cells. Thromb. Haemost. 73, 812-818, 1995
Ptashne, M. Gene regulation by proteins acting nearby and at a distance. Nature 322, 697–701, 1986
Petersen, T.E. The amino-terminal domain of thrombomodulin and pancreatic stone protein are homologous with lectins. FEBS Lett. 231, 51-3, 1988
Pugh, B.F. Mechanisms of transcription complex assembly. Curr. Opin. Cell. Biol. 8, 303-311, 1996
Preissner, K.T., Koyama, T., Muller, D., Tschopp, J., and Muller-Berhaus G. Domain structure of the endothelial cell receptor thrombomodulin as deduced from modulation of its anticoagulant functions. Evidence for a glycosaminoglycan- dependent secondary binding site for thrombin. J. Biol Chem. 265, 4915-22, 1990
Richard, H., Clayton B., David C., Hunter, C., and Champion, C.B. Regulation of endothelial thrombomodulin expression by inflammatory cytokines is mediated by activation of nuclear factor-kappa B. Blood 105, 3910-3918, 2005
Scarpati, E.M., and Sadler, J.E. Regulation of endothelial cell coagulant properties. Modulation of tissue factor, plasminogen activator inhibitors, and thrombomodulin
by phorbol 12-myristate 13-acetate and tumor necrosis factor. J. Biol. Chem. 264, 20705-20713, 1989
Sadler, J.E. Thrombomodulin structure and function. Throm. Haemost. 78, 392-5, 1997
Suichi, H., Hidemi, I.,, Fumiko, M., Masao, K., and Keiichiro, K. Acceleration of thrombomodulin gene transcription by retinoid acid. J. Biol. Chem. 276, 2440-2450, 2001
Suehiro, T., Shimada, M., Matsumata, T., Taketomi, A., Yamamoto, K., and Sugimachi, K. Thrombomodulin inhibits intrahepatic spread in human hepatocellular carcinoma. Hepatology 21, 1285-90, 1995
Shao, Z ., and Robbins, P.D. Differential regulation of E2F and Sp1-mediated transcription by G1 cyclins. Oncogene 10, 1995
Siaak, P., and Guntran, S. Survey and summary: A tale of three fingers: the family of mammalian Sp/XKLF transcriptional factor. Nucleic Acid Research 27, 2991-3000, 1999
Suzuki, K., Nishioka, J., Hayashi, Y., and Kosaka, Y. Functional active thrombomodulin is present in human platelets. J. Biochem. 104, 628-632, 1988
Tamura, A., Matsubara, O., Hirokawa, K., and Aoki, N. Detection of thrombomodulin in human lung cancer cells. Am. J. Pathol. 142, 79-85, 1993
Tsiang, M., Lentz, S.R., and Sadler, J.E. Functional domains of membrane-bound human thrombomodulin.EGF-like domains four to six and the serine/ threonine-rich domain are required for cofactor activity. J. Biol. Chem. 267, 6164-70, 1992
Van der, D, Nischan, C., and Kunz, C. Ets transcriptional factor binding site is required for positive and TNF-a-induced negative promoter regulation. Nucleic Acid R.es. 21, 5636-5643, 1993
Weis, J.R., Pitas, R.E., Wilson, B.D., and Rodgers, G.M. Oxidized low-density lipoprotein increases cultured human endothelial cell tissue factor activity and reduces protein C activation. FASEB J. 5, 2459-2465, 1991
Wihelm, S., Schmitt, M., Parkinson, J., Kuhn, W., Graeff, H., and Wilhelm, O.G. Thrombomodulin, a receptor for the serine protease thrombin, is decreased in primary tumors and metastastasei but increased in ascitic fluid of patients with advanced ovarian cancer FIGO IIIc. Int. J. Oncol. 13, 645-51, 1998
Zhang, Y., Wriler-Guettler, H.,Cheng, J., Wilhelm, O., Deng, Y., Qiu, F., Nakagawa, K., Klevesath, M., Wihelm, S., Bohrer, H., Nakagawa, M., Graeff, H., Martin, E., Stern, D.M., Rosenberg, R., and DmZiegler, N. Thrombomodulin modulates growth of tumor cells independent of its anticoagulant activity. J. Clin. Invest. 101, 1301-9, 1998
Zwicker, J., Liu, N., Engeland, K., Lucibello, F.C. and Muller, R. Cell cycle regulation of E2F site occupation in vivo. Science 271, 1595–1597, 1996