| 研究生: |
蘇志勳 Su, Chih-Hsun |
|---|---|
| 論文名稱: |
一般居室空間改造為負壓隔離病房之換氣效能檢測與預測分析—以高雄SARS篩選觀察中心為例— A Study on the Ventilation Performance of a General Single Room Reconfigured by the Push-Pull HVAC System— A Case Study of Kaohsiung Fever Screening & Evaluation Hospital — |
| 指導教授: |
江哲銘
Chiang, Che-Ming |
| 學位類別: |
碩士 Master |
| 系所名稱: |
規劃與設計學院 - 建築學系碩士在職專班 Department of Architecture (on the job class) |
| 論文出版年: | 2004 |
| 畢業學年度: | 92 |
| 語文別: | 中文 |
| 論文頁數: | 62 |
| 中文關鍵詞: | 數值模擬 、負壓隔離病房 、嚴重急性呼吸道症候群 、一般居室空間 、換氣效能 |
| 外文關鍵詞: | negative-pressure room, numerical simulation, Air Chang Rate., a general single room, Severe acute respiratory syndrome (SARS) |
| 相關次數: | 點閱:110 下載:18 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在2003年造成全球恐慌的新病毒---嚴重急性呼吸道症候群(SARS), SARS疫情之所以會在如此短暫的時間迅速擴散,除了人員的移動所造成的傳播外,氣流的流動也可能有一定的影響力。基於以上「健康」議題,本研究針對負壓隔離病房之室內環境因子,包括通風路徑、污染物的移除等方面進行探討,並將如何的有效確保醫護人員之健康,提高負壓隔離病房通風換氣效率,作為本研究的主要課題。以改造之負壓隔離病房為實驗場所,透過儀器做一檢測,針對所得數據透過交叉分析比較,及數值模擬解析與可視化的煙流示蹤模擬系統,提出更新改善模式之機制,作為未來舊有空間改造為負壓隔離病房操作更新操作模式之參考。本研究之評估標準參考AIA(The American Institute of Architects)提出之負壓隔離房通風換氣建議值12ACH,負壓空間之排氣大於供氣,內外靜壓差≧8Pa(≒0.032in-WG),排氣量採用美國疾病管制局(CDC)建議應達供氣量之1.2倍。
本研究主要可歸納以下結論:
1. 改造後負壓隔離病房,經室內通風環境性能診斷的結果:溫度為24.7℃~26.2℃,符合IEI指標基準22~28℃;濕度為64.9% ~68.6%;風速方面,隔離病房內介於1.2 m/s~ 2.4 m/s,平均風速為1.7 m/s,門下入風處之風速則為2.94 m/s~4.50 m/s,平均為3.89 m/s;室內機械排風量平均為687.8 cfm,室內入風量平均為511.8 cfm。內外壓差部分,平均內外壓差為-0.157 mm-Hg(相當於-20.92 Pa、-2.13 mm-Ag)。室內抽風量與進風量之比值為1.34,超過美國疾病管制局建議值,換氣次數經換算後達24.96ACH,高於一般負壓隔離病房規定之12ACH,內外壓差高於一般隔離房8Pa標準。
2. 根據CFD數值模擬流場與溫度場的分布狀況,模擬結果與實際狀況近似
模擬之氣流分佈情況,可以發現入風口與出風口處的氣流明顯較強。
從模擬結果,在頭部附近受到排風機牽引,能將排出之污染物流向出口處,印證機械排風機對於排氣有實質效果,但超過1公尺不明顯。
從室內溫度分佈斷面圖顯示頭部上方溫度較高,因熱浮力影響,人體發熱有助於氣流上升排氣,室內溫度會因氣流流動方向而些微變化。
由現況氣流模擬狀況發現室內有部分渦流情形,在床下增加擋板截斷此循環渦流,另利用數值解析方法(CFD)預測室內流場,藉以修正設計,使室內氣流場呈現逐漸上升之置換式流動方式,避免病人頭部區域的渦流現象。
3. 本研究操作,所提出之一般居室空間改造為負壓隔離病房改造操作流程,可提供設計者預測室內流場以進行通風設計。負壓隔離病房理想之設計應確保病人呼出之污染物能迅速有效地排除,而不迴流至空間內其他區域。
In 2003, a viral respiratory illness- Severe acute respiratory syndrome (SARS) caused the global scare. The illness of SARS was thought to be transmitted most readily and broadly by the primary spread of close person-to-person contact and the movement. In addition, it is a possible incidence of airflow or by other ways. On the base of occupant-health, the study was mainly focused on improving the ventilation performance of a reconfigured room. The issues included indoor environment factors such as the airflow path, pollutants elimination and so on etc. The experimental field was a general single room that adopted the measurement via smoke generation and numerical simulation by CFD techniques. Proposed a standard procedure by compared the measured and simulated results. Air Change Rate was 12ACH referred to the proposed criterion of AIA (The American Institute of Architects), the outlet air was greater than the inlet air in a negative-pressure room, the static pressure (sp) difference between indoor and outdoor≧8Pa (closed to 0.032in-WG), and outlet air was 1.2 multiple of the inlet air that was referred to the proposed benchmark of The Centers for Disease Control (CDC). Our major findings were as below:
1. The Ventilation measurement of a Reconfigured General Single Room by the Push-Pull HVAC System: the indoor temperature was 24.7℃~26.2℃ was conformed to the benchmark, 22~28℃, of IEI; indoor relative humidity was 64.9% ~68.6%; indoor air velocity was 1.2 m/s~2.4 m/s, the average air velocity was 1.7 m/s, the inlet air wind-speed was 2.94 m/s~4.50 m/s at the lower part of the door, the average the inlet air wind-speed was 3.89 m/s; the average outlet air was 687.8 cfm by an air exhauster, the average the inlet air was 511.8 cfm. The average static pressure (sp) difference was -0.157 mm-Hg(closed to -20.92 Pa、-2.13 mm-Ag). The outlet air was 1.34 multiple of the inlet air that beyond the proposed benchmark of The Centers for Disease Control (CDC). Air Change Rate was 24.96ACH beyond the proposed criterion, 12ACH, of AIA, the static pressure (sp) difference between indoor and outdoor exceeded 8Pa.
2. Simulated results of airflow and thermal comfort approximated to the truth. From the airflow simulated result, it was obviously strong in the path of the outlet air and the inlet air. Besides beyond the 1-meter scope of the head zone, pollutants could be eliminated efficiently by the exhauster. From the thermal comfort simulated result, it was a high temperature nearby the head zone. Indoor temperature showed slight variations for changing the path of the airflow. It also showed eddy current from simulated results of the indoor airflow. Using CFD techniques could predict the indoor airflow, revise the reconfigured design, and avoid eddy current surrounding the head zone.
3. From the procedure, proposed a practical evaluation by the numerical simulation performed before the renovation on the ventilation performance of a general single room reconfigured by the push-pull HVAC system. A negative-pressure room should be assured of eliminated efficiently by the exhauster, and avoided to come back to the other zone.
一、中文文獻
1. 江哲銘等,辦公建築室內空氣品質(CO2、CO、PM10)之研究,內政部建築研究所籌備處,1993。
2. 江哲銘,「空氣流場預測在輔助建築設計之應用-採用CFD數值模擬技術」,中華民國建築師學會第十二屆建築研究發表會論文集,2000。
3. 周伯丞,建築軀殼開口部自然通風效果之研究,成大博論,2000。
4. 林振華,呼吸道傳染隔離病房通風換氣需求與系統結能之探討,北科大碩論,2002。
5. 醫院空調規範與隔離病房空調系統設計,工研院能資所,2001。
6. 陳若華,「建築群配置方式與自然通風效應之研究」,內政部建築研究所, 1999。
7. 江哲銘、王文安,「台灣地區集合住宅室內空氣環境使用後評估」住宅學報,1994。
8. 廖崇文,「不同空調通風路徑對室內空氣與溫熱環境影響之研究」,樹德碩論,2003。
9. 吳讓治、賴榮平、莊嘉文,建築設備概論,詹氏書局,1998。
10. 林憲德等,建築節約能源基本教材,內政部建築研究所專題研究計劃,1996。
11. 江哲銘,室內環境保健控制綜合指標研究,內政部建築研究所八十八年度建築研究計劃聯合研討會,1999。
12. 陳念祖,高架地板置換式自然通風對室內通風效率之影響,成大碩論,2001。
13. 江哲銘,建築技術規則有關通風條文增修訂之研究,內政部建築研究所,1997。
14. 陳海曙,室內空氣品質不佳之案例研究,中華民國建築學會第三屆建築學術研究發表會論文集,1990。
15. 涂玉峰,室內空氣環境綜合評估指標之探討-以台灣南部工業區辦公大樓為例,1999。
16. 徐偉森,「住宅臥室自然通風效果之研究-濃度衰減法實驗與數值模擬之解析」,成大碩論.1997。
17. 陳鵬宇,「住宅單元空間自然通風效果之研究-以集合住宅臥室空間為例」,成大碩論,1996。
18. 蘇慧貞、江哲銘、李俊璋等,室內空氣品質標準於不同建築物之試行評估及管制策略研定,行政院環保署,2000。
19. 內政部營建署委託研究,換氣與空氣調節設備技術規範,中華民國建築學會,1986。
20. 吳照順,單一空間內空氣品質與熱舒適度之研究,中原機械所碩論1996。
二、英文文獻
21. Healthy Care IAQ, October, 2000.
22. Guidelines for Design and Construction of Hospital and Health Care Facilities, the American Institute of Architects, 2001.
23. Fanger, P. Ole, The Philosophy behind Ventilation: Past, Present and Future, Proceedings of Indoor Air ’96, Nagoya(Japan), Vol. 4, pp. 3-12, 1996.
24. Turner, Fred, Achieving IAQ and Efficiency, ASHRAE Journal, Vol. 40, No. 12, pp. 8-16, 1998.
25. David W. Bearg,Indoor Air Quality and HVAC Systems,Lewis Publisher,1993.
26. Martin W Liddament,A Guide to Energy Efficient Ventilation,AIVC Guide,pp.32,1996.3.
27. M.Samdberg and M.Sjoberg,The Use of Moments for Assessing Air Quality Ventilated Rooms,Building and Environment 18,pp.181-pp.197,1983.
28. David Etheridge,Mats Sandberg,,Building Ventilation:Theory and Measurement,John Wile & Sons,pp.475-pp.479,1996.
29. Nelson R.M.and Pletcher R.H,An Explicit Scheme for the Calculation of Confined Turbulent Flow with Heat Transfer,Proc 1974 Heat Transfer and Fluid Mechanics Institute,Standford University Press,Standford, Califomia,pp.154-pp.170,1974.
30. Chen,Q. , 1995, Comparison of Different Models for Indoor Air Flow,“Numerical Heat Transfer”,Part B,28:353-369.
31. Ryouichi Kuwahara,etc,「An Experimental and Numerical Study of the Relationship Between Ventilation Efficiency and Air Supply/Exhaust System of an Atrium Space」,roomvent’2000,2000.
32. T. Karimipanah,etc,「A Comparative Study of Different Air Distribution Systems in a Classroom」,roomvent’2000,2000.
三、日文文獻
33. リチャ-トA.ワツテソ﹑ビ-タ-A.ツェフ,室內空氣污染解析・予測・對策と人体影響デ-タ,井上書院,p.102-p.103,1990.4。