| 研究生: |
劉信毅 Liu, Shin-Yi |
|---|---|
| 論文名稱: |
IC封裝模具鏡面與霧面處理對EMC間黏著效應之研究 Adhesion Effects of EMC on Mirror and Matted Mold Surfaces during IC Packaging Process |
| 指導教授: |
李輝煌
Lee, Huei-Huang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 工程科學系 Department of Engineering Science |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 中文 |
| 論文頁數: | 82 |
| 中文關鍵詞: | IC封裝 、黏著效應 、霧面處理 、鏡面處理 、黏模力特性曲線 |
| 外文關鍵詞: | IC package, Adhesion effects, Matted surface treatment, Mirror surface treatment, Characteristic curve |
| 相關次數: | 點閱:121 下載:6 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在半導體IC封裝產業中,封膠材料(Epoxy Molding Compound, EMC)在熟化(Curing)的過程中會包覆電子晶片,整個過程中會與封裝模具表面產生結合,造成黏著的情況,稱之為黏著效應(Adhesion effects);而黏著效應會影響整個產線的生產過程,如果黏著效應過大,則在IC成品脫模的時候產生表面破壞、成品缺角,進而導致封膠失敗、生產率降低、信賴度不佳等結果。所以如何在維持現有模具的設計下,藉由鍍層(Coating)以及表面處理(Surface treatment)來有效降低黏著效應的影響,是目前產業界及研究單位所重視的議題。
本論文將利用實驗室自行研究完成的自動化電子封裝黏模力檢測設備與量測技術,配合一組與實際封裝產線相當接近的製程參數,進行一系列的黏模力量測,在以往的研究中,量測試片的表面處理皆是作霧面處理(Matted surface treatment)居多,並且搭配不同鍍層下去作探討,本實驗除了繼續進行霧面處理的探討之外,還會探討經過鏡面處理(Mirror surface treatment)的量測試片,將兩者皆搭配不同的鍍層,去研究其黏模效應,並觀察封膠材料在量測試片表面的情況。
最後,本論文也將針對不同的鍍層以及表面處理進行400模次的長效性連續實驗,觀察其黏模力的趨勢,透過線性迴歸分析(Linear regression)將實驗數據擬合出一條黏模力特性曲線(Characteristic curve),將實驗所擬合出來的特性曲線進行比較,觀察不同鍍層以及表面處理對封膠材料的黏著影響程度,找出最佳的清模時機,並且判斷可以有效降低黏著效應的原因。
In the IC packaging industry, epoxy molding compound (EMC) in the curing process covers electronic chips. It causes the adhesion phenomenon on the surface of packaging mold called adhesion effects. Adhesion effects influence the entire process in production line. If adhesion effect is too large, it destroys the surface of IC productions during mold release and lead to the failure of IC packaging, low productivity, poor reliability, etc. Therefore, the current issues which in industry and research department are how to maintain existing mold design and use coating and surface treatment to decrease adhesion effects. This thesis will use adhesion force equipment by automation electronic packaging and measurement techniques which complete by our laboratory. We work with a set of process parameters which is close to the actual packaging line, and do a series of adhesion force testing. In previous research, the surfaces of specimen are in the matted surface treatment majority and collocate different coating. In addition to research of matted surface treatment, this research will investigate mirror surface treatment, too. The both specimens are collocated with different coating to do research and observe the surface condition of specimens. In the end, this thesis also carries out the continuous experiments on different coatings and surface treatment and observes the trend of adhesion force. Through the analysis of linear regression, the experiment results will be adapted a characteristic curve of adhesion force and then we will compare it to observe the degree which different coating and surface treatment on adhesion effect. According to experiment results, we find the best clean time on mold and judge the reasons which can reduce adhesion effects.
[1] A. C. Loos and G. S. Springer, “Curing of Epoxy Matrix Composites,” Journal of Composite Materials, Vol. 17, No. 2, pp. 135-169, 1983.
[2] G. S. Springer, “Resin Flow During the Cure of Fiber Reinforced Composites,” Journal of Composite Materials, Vol. 16, No. 5, pp. 400-410, 1982.
[3] U. F. González, S. F. Shen, and Claude Cohen, “Rheological Characterization of Fast-Reacting Thermosets Through Spiral Flow Experiments,” Polymer Engineering and Science, Vol. 32, No. 3, pp. 172-181, 1992.
[4] R. L. Frutiger, “The Effect of Flow on Cavity Surface Temperatures in Thermoset and Thermoplastic Injection Molding,” Polymer Engineering and Science, Vol.26, No. 3, pp. 243-254, 1986.
[5] C. C. Lee and C. L. Tucker III, “Flow and Heat Transfer in Compression Mold Filling,” Journal of Non-Newtonian Fluid Mechanics, Vol. 24, No. 3, pp. 245-264, 1987.
[6] D. R. Edwards, K. G. Heinen, S. K. Groothuis, and J. E. Martinez, “ Shear Stress Evaluation of Plastic Packages,” IEEE Transactions on Components, Hybrids, and Manufacturing Technology, Vol. 12, No. 4, pp. 618-627, 1987.
[7] S. Kim, “The Role of Plastic Package Adhesion in Performance,” IEEE Transaction on Components, Hybrids, and Manufacturing Technology, Vol. 14, No. 4, pp. 809-295, 1991.
[8] M. Ko, M. Kim, D. Shin, Y. Park, M. Moon, and I. Lim, “Investigation on the Effect of Molding Compounds on Package Delamination,” Electronic Components and Technology Conference, pp. 1242-1247, San Jose, California, 1997.
[9] N. Tanaka, M. Kitano, T. Kumazawa, and A. Nishimura, “Evaluating IC-Package Interface Delamination by Considering Moisture-Induced Molding-Compound Swelling,” IEEE Transaction on Components and Packaging Technology, Vol. 22, No. 3, pp. 426-432, 1999.
[10] T. Scherban, B. Sun, J. Blaine, C. Block, B. Jin, and E. Andideh, “Interfacial Adhesion of Copper-Low k Interconnects,” IEEE Interconnect Technology Conference, pp. 257–259, Burlingame, California, 2001.
[11] R. Balkova, S. Holcnerova, and V. Cech, “Testing of Adhesion for Bonding of Polymer Composites,” International Journal of Adhesion and Adhesives, Vol. 22, No. 4, pp. 291-295, 2002.
[12] T. L. Gordon and M. E. Fakley, “The Influence of Elastic Modulus on Adhesion to Thermoplastics and Thermoset Materials,” International Journal of Adhesion and Adhesives, Vol. 23, No. 2, pp. 95-100, 2003.
[13] S. Murray, C. Hillman, and M. Pecht, “Environmental Aging and Deadhesion of Siloxane-Polyimide-Epoxy Adhesive,” IEEE Transactions on Components and Packaging Technologies, Vol. 26, No. 3, pp. 524-531, 2003.
[14] K. Uehara and M. Sakurai, “Bonding Strength of Adhesives and Surface Roughness of Joined Parts,” Journal of Materials Processing Technology, Vol. 127, No. 2, pp. 178-181, 2002.
[15] S. Zhang, X. Zeng, Z. Tang, and M. Jen Tan, “Exploring the Antisticking Properties of Solid Lubricant Thin Films in Transfer Molding,” International Journal of Modern Physics B, Vol. 16, Nos. 6&7, pp. 1080-1085, 2002.
[16] S. M. Chiu, S. J. Hwang, C. W. Chu, and D. Gan, “The Influence of Cr-based Coating on the Adhesion Force Between Epoxy Molding Compounds and IC Encapsulation Mold,” Thin Solid Films, Vol. 515, No. 1, pp. 285-292, 2006.
[17] P. Navabpour, D. G. Teer, D. J. Hitt, and M. Gilbert, “Evaluation of Non-stick Properties of Magnetron-sputtered Coatings for Moulds Used for the Processing of Polymers,” Surface and Coatings Technology, Vol. 201, No. 6, pp. 3802-3809, 2006.
[18] Y. Y. Hsieh, H. T. Hsu, M. T. Lin, Y. S. Lai, and S. H. Chen, “A Study of Self-assembled Monolayer Coating for Non-stick Encapsulation Mold,” International Microsystems, Packaging, Assembly and Circuits Technology Conference, Taipei, Taiwan, pp. 181-183, 2007.
[19] 張祥傑,微材料測試系統之設計與製作,碩士論文,國立成功大學機械工程研究所,1999年。
[20] 王俊祥,電子封裝黏模效應之量測技術開發與研究,碩士論文,國立成功大學機械工程研究所,2000年。
[21] 莊俊華,IC構裝黏模測試機之設計與製造,碩士論文,國立成功大學工程科學研究所,2001年。
[22] 朱言主,IC封裝模具黏著效應之研究,碩士論文,國立成功大學工程科學研究所,2002年。
[23] M. Yoshii, Y. Mizukami, and H. Shoji, “Evaluation Technologies on Moldability of Epoxy Molding Compounds for Encapsulation of Semiconductors,” Hitachi Chemical Technical Report, No. 40, pp. 13-20, 2003.
[24] S. J. Chang and S. J. Hwang, “Design and Fabrication of an IC Encapsulation Mold Adhesion Force Tester,” IEEE Transaction on Electronics Packaging Manufacturing, Vol. 26, No. 4, pp. 281-285, 2003.
[25] 林俊宏,EMC與金屬介面剪向黏著力試驗機台之研發,碩士論文,國立成功大學工程科學研究所,2003年。
[26] 黃勁華,EMC與金屬介面剪向黏著力試驗機台之設計與改良,碩士論文,國立成功大學工程科學研究所,2004年。
[27] 張祥傑,IC封裝黏模力之量測與分析,博士論文,國立成功大學機械工程研究所,2004年。
[28] 李文宏,IC封裝材料對模具及剪向黏著力量之研究,碩士論文,國立成功大學工程科學研究所,2005年。
[29] 陳暉長,電子封裝模具以黏著力作為設計參數之可行性研究,碩士論文,國立成功大學工程科學研究所,2006年。
[30] 楊昌明,表面清洗對電子封裝材料和模具間黏著力的影響,碩士論文,國立成功大學工程科學研究所,2007年。
[31] 黃昭霖,剪向與黏著力測試機模具之設計與研究,碩士論文,國立成功大學工程科學研究所,2008年。
[32] 宋政宏,IC封裝連續成形之黏模力特性研究,碩士論文,國立成功大學工程科學研究所,2009年。
[33] 徐善宥,IC封裝模具表面噴砂處理與放電加工處理對於EMC間黏著效應研究,碩士論文,國立成功大學工程科學研究所,2010年。
[34] 葉佳循,IC封裝模穴圓角對於EMC間黏著效應的影響,碩士論文,國立成功大學工程科學研究所,2011年。
[35] 鄧丞宏,IC封裝模具表面氧化處理對於EMC間黏著效應之影響,碩士論文,國立成功大學工程科學研究所,2012年。
[36] “Test Method for Measurement of Adhesive Strength Between Leadframes and Molding Compounds,” STD. SEMI G69-0996, 1996.
[37] “Standard Test Method for Apparent Shear Strength of Single-Lap-Joint Adhesively Bonded Metal Specimens by Tension Loading,” STD. ASTM D1002-94.
[38] “Standard Test Method for Cleavage Strength of Metal-to-Metal Adhesive Bonds,” STD. ASTM D1062-96.
[39] “Standard Test Method for Tensile Properties of Adhesive Bonds,” STD. ASTM D897-95a.
[40] “Standard Test Method for Strength Properties of Metal-to-Metal Adhesives by Compression Loading (Disk Shear),” STD. ASTM D2182-72.
[41] “Standard Recommended Practice for Determining the Strength of Adhesively Bonded Plastic Lap-Shear Sandwich Joint in Shear by Tension Loading,” STD. ASTM D3164-73.
[42] B. A. Chapman, H. D. DeFord, G. P. Wirtz, and S. D. Brown, in: Technology of Glass, Ceramic, or Glass-Ceramic to Metal Sealing, W. E. Moddeman, C. W. Merten, and D. P. Kramer (Eds.), MD-Vol. 4, pp. 77-87, American Society of Mechanical Engineers, New York, Copyright 1987.