簡易檢索 / 詳目顯示

研究生: 管辰雲
Kuan, Chen-Yun
論文名稱: 以第一原理計算探討NbMoTaW系列高熵合金之光學性質與導電性質
First-principles study of optical and electrical conductivity properties of NbMoTaW based high-entropy alloys
指導教授: 許文東
Hsu, Wen-Dung
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 71
中文關鍵詞: 高熵合金功函數反射率Drude-Lorentz model雞尾酒效應
外文關鍵詞: High-entropy alloys(HEAs), work function, reflectance, Drude-Lorentz model, cocktail effect
相關次數: 點閱:42下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 高熵合金在相穩定與機械性質的優異,讓越來越多的學者與機構爭相投入研究,但其光學性質與導電性質的優劣卻鮮有人探討,固本研究的目標之一便是設計出一套模擬方法,可用來粗估高熵合金的功函數、反射率與導電度等性質。
    一開始為了開發能取代現有的量測探針如錸鎢探針、鈹銅探針等,本研究選定了機械性質佳的高熵合金作為對象,其中又以NbMoTaW是由幾個導電度高的元素所組成,故最後計算的對象為等比例的Nb0.25Mo0.25Ta0.25W0.25與調比例的Nb0.15Mo0.35Ta0.15W0.35和Nb0.15Mo0.15Ta0.35W0.35等三種材料,因等比例的結構在先前實驗室學長的努力下已累積不少的計算成果,所以本研究會著重於調比例的計算和三者性質的比較,並探討雞尾酒效應是否可同樣應用於上述的性質當中。

    In this study, the work function, reflectance, and frequency dependent conductivity are successful to be simulated. On one hand using linear combination of work function and conductivity of elements can provide a good prediction of them of HEAs, but on the other hand this method cannot be applied on reflectance simulation. Moreover, the AC conductivity of HEAs from low frequency to high frequency has been investigated by ab-initio calculations and the Drude-Lorentz (DL) model. The DL model could give good predictions of the AC conductivity of HEAs from several Hz to 10^16 Hz. At a frequency above 10^14 Hz where the Lorentz model dominates the AC conductivity could be simply estimated by the linear combination of the conductivity of pure elements according to the stoichiometry. At a frequency below 10^14 Hz, an empirical relaxation time obtained from experiments is needed to improve the predictions. This is due to the properties of free electrons change with the materials' composition.

    摘要 I Abstract II 誌謝 XII 表目錄 XV 圖目錄 XVI 第一章 緒論 1 第二章 文獻回顧 3 2.1 高熵合金的定義與其四大效應 3 2.2 常見的高熵合金 4 2.3 NbMoTaW高熵合金 4 第三章 模擬基礎理論回顧 5 3.1 第一原理計算(First-principles Calculation) 5 3.1.1 密度泛函理論(DFT) 5 3.1.2 Kohn-Sham 方法與方程式 6 3.1.3 交換關聯能-局部密度近似與廣義梯度近似 8 3.1.4 贗式能 9 3.1.5 週期性邊界 9 3.2 功函數 10 3.3 Drude模型 11 3.3.1 溫度對於自由電子的影響 12 3.3.2 直流電場與時變分析 13 3.3.3 金屬導電率 13 3.3.4 光學介電常數 15 3.4 Lorentz 模型 16 3.5 反射率 17 3.6 分子動力學 18 3.6.1設定初始條件 18 3.6.2系綜 19 3.6.3 Verlet 與Velocity-Verlet演算法 19 3.6.4溫度控制方法 20 3.6.5截斷勢能 21 第四章 物理模型與模擬設計 22 4.1 高熵合金模型建立 22 4.2 結構優化 24 4.3 功函數計算 25 4.4 頻率依變光學介電常數計算 27 4.5 LAMMPS大尺度模擬 28 第五章 結果與討論 29 5.1 NbMoTaW的光學性質 29 5.1.1 功函數 29 5.1.2 反射率 34 5.2 NbMoTaW的導電性質 39 5.2.1 導電電子密度 40 5.2.2 頻率依變導電度 42 5.2.3 晶格扭曲與導電度的關聯性 60 第六章 結論 67 文獻回顧 68

    [1] J. W. Yeh, S. K. Chen, S. J. Lin, J. Y. Gan, T. S. Chin, T. T. Shun, et al., "Nanostructured high‐entropy alloys with multiple principal elements: novel alloy design concepts and outcomes," Advanced Engineering Materials, vol. 6, pp. 299-303, 2004.
    [2] K.-H. Huang and J. Yeh, "A study on the multicomponent alloy systems containing equal-mole elements," Hsinchu: National Tsing Hua University, vol. 1, 1996.
    [3] B. Cantor, I. Chang, P. Knight, and A. Vincent, "Microstructural development in equiatomic multicomponent alloys," Materials Science and Engineering: A, vol. 375, pp. 213-218, 2004.
    [4] Y. Jien-Wei, "Recent progress in high entropy alloys," Ann. Chim. Sci. Mat, vol. 31, pp. 633-648, 2006.
    [5] O. Senkov, G. Wilks, D. Miracle, C. Chuang, and P. Liaw, "Refractory high-entropy alloys," Intermetallics, vol. 18, pp. 1758-1765, 2010.
    [6] G. Kresse and J. Furthmüller, "Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set," Physical Review B, vol. 54, pp. 11169-11186, 10/15/ 1996.
    [7] E. Fermi, "Un metodo statistico per la determinazione di alcune priorieta dell’atome," Rend. Accad. Naz. Lincei, vol. 6, p. 32, 1927.
    [8] L. H. Thomas, "The calculation of atomic fields," in Mathematical proceedings of the Cambridge philosophical society, 1927, pp. 542-548.
    [9] P. Hohenberg and W. Kohn, "Density functional theory (DFT)," Phys. Rev, vol. 136, p. B864, 1964.
    [10] W. Kohn and L. J. Sham, "Self-consistent equations including exchange and correlation effects," Physical review, vol. 140, p. A1133, 1965.
    [11] D. R. Hartree, "The wave mechanics of an atom with a non-Coulomb central field. Part I. Theory and methods," Сборник статей к мультимедийному электронному учебно-методическому комплексу по дисциплине «физика атома и атомных явлений»/отв. ред. Шундалов МБ; БГУ, Физический факультет, 1928.
    [12] J. P. Perdew and W. Yue, "Accurate and simple density functional for the electronic exchange energy: Generalized gradient approximation," Physical Review B, vol. 33, pp. 8800-8802, 06/15/ 1986.
    [13] P. E. Blöchl, "Projector augmented-wave method," Physical review B, vol. 50, p. 17953, 1994.
    [14] S. Trasatti and R. Parsons, "Interphases in systems of conducting phases (Recommendations 1985)," Pure and Applied Chemistry, vol. 58, pp. 437-454, 1986.
    [15] P. Drude, "Zur Elektronentheorie der Metalle," Annalen der Physik, vol. 306, pp. 566-613, 1900.
    [16] F. Reif, Fundamentals of statistical and thermal physics: Waveland Press, 2009.
    [17] V. Lucarini, "Kramers-Kronig relations in optical materials research," 2005.
    [18] D. Roessler, "Kramers-Kronig analysis of non-normal incidence reflection," British Journal of Applied Physics, vol. 16, p. 1359, 1965.
    [19] B. J. Alder and T. E. Wainwright, "Studies in molecular dynamics. I. General method," The Journal of Chemical Physics, vol. 31, pp. 459-466, 1959.
    [20] L. Verlet, "Computer" experiments" on classical fluids. I. Thermodynamical properties of Lennard-Jones molecules," Physical review, vol. 159, p. 98, 1967.
    [21] W. C. Swope, H. C. Andersen, P. H. Berens, and K. R. Wilson, "A computer simulation method for the calculation of equilibrium constants for the formation of physical clusters of molecules: Application to small water clusters," The Journal of Chemical Physics, vol. 76, pp. 637-649, 1982.
    [22] S. Nosé, "A unified formulation of the constant temperature molecular dynamics methods," The Journal of chemical physics, vol. 81, pp. 511-519, 1984.
    [23] W. G. Hoover, "Canonical dynamics: Equilibrium phase-space distributions," Physical review A, vol. 31, p. 1695, 1985.
    [24] S. Plimpton, "Fast parallel algorithms for short-range molecular dynamics," Journal of computational physics, vol. 117, pp. 1-19, 1995.
    [25] G. P. Pun and Y. Mishin, "Optimized interatomic potential for silicon and its application to thermal stability of silicene," Physical Review B, vol. 95, p. 224103, 2017.
    [26] P. Williams, Y. Mishin, and J. Hamilton, "An embedded-atom potential for the Cu–Ag system," Modelling and Simulation in Materials Science and Engineering, vol. 14, p. 817, 2006.
    [27] Y. Zuo, C. Chen, X. Li, Z. Deng, Y. Chen, J. r. Behler, et al., "Performance and cost assessment of machine learning interatomic potentials," The Journal of Physical Chemistry A, vol. 124, pp. 731-745, 2020.
    [28] V. Zhakhovskii, N. Inogamov, Y. V. Petrov, S. Ashitkov, and K. Nishihara, "Molecular dynamics simulation of femtosecond ablation and spallation with different interatomic potentials," Applied Surface Science, vol. 255, pp. 9592-9596, 2009.
    [29] K.-H. Kim, J. B. Jeon, and B.-J. Lee, "Modified embedded-atom method interatomic potentials for Mg–X (X= Y, Sn, Ca) binary systems," Calphad, vol. 48, pp. 27-34, 2015.
    [30] M. R. Fellinger, H. Park, and J. W. Wilkins, "Force-matched embedded-atom method potential for niobium," Physical Review B, vol. 81, p. 144119, 2010.
    [31] X. Zhou, R. Johnson, and H. Wadley, "Misfit-energy-increasing dislocations in vapor-deposited CoFe/NiFe multilayers," Physical Review B, vol. 69, p. 144113, 2004.
    [32] A. Nichol and G. J. Ackland, "Property trends in simple metals: An empirical potential approach," Physical Review B, vol. 93, p. 184101, 2016.
    [33] X.-G. Li, C. Chen, H. Zheng, Y. Zuo, and S. P. Ong, "Complex strengthening mechanisms in the NbMoTaW multi-principal element alloy," npj Computational Materials, vol. 6, pp. 1-10, 2020.
    [34] A. Jain, S. P. Ong, G. Hautier, W. Chen, W. D. Richards, S. Dacek, et al., "Commentary: The Materials Project: A materials genome approach to accelerating materials innovation," APL materials, vol. 1, p. 011002, 2013.
    [35] R. Tran, X.-G. Li, J. H. Montoya, D. Winston, K. A. Persson, and S. P. Ong, "Anisotropic work function of elemental crystals," Surface Science, vol. 687, pp. 48-55, 2019.
    [36] D. Gall, "Electron mean free path in elemental metals," Journal of Applied Physics, vol. 119, p. 085101, 2016.
    [37] K. Shanks, S. Senthilarasu, and T. K. Mallick, "Optics for concentrating photovoltaics: Trends, limits and opportunities for materials and design," Renewable and Sustainable Energy Reviews, vol. 60, pp. 394-407, 2016.
    [38] " FonSinEM - free electromagnetic simulator, https://sites.google.com/site/fonsinem/.".
    [39] M. Schubert, C. Bundesmann, H. v. Wenckstern, G. Jakopic, A. Haase, N.-K. Persson, et al., "Carrier redistribution in organic/inorganic (poly (3, 4-ethylenedioxy thiophene/poly (styrenesulfonate) polymer)-Si) heterojunction determined from infrared ellipsometry," Applied physics letters, vol. 84, pp. 1311-1313, 2004.
    [40] M. Schubert, C. Bundesmann, G. Jakopic, H. Maresch, H. Arwin, N.-C. Persson, et al., "Infrared ellipsometry characterization of conducting thin organic films," Thin Solid Films, vol. 455, pp. 295-300, 2004.
    [41] S. Chen, P. Kühne, V. Stanishev, S. Knight, R. Brooke, I. Petsagkourakis, et al., "On the anomalous optical conductivity dispersion of electrically conducting polymers: ultra-wide spectral range ellipsometry combined with a Drude–Lorentz model," Journal of Materials Chemistry C, vol. 7, pp. 4350-4362, 2019.
    [42] P. B. Johnson and R.-W. Christy, "Optical constants of the noble metals," Physical review B, vol. 6, p. 4370, 1972.
    [43] "MatWeb Material Property Data.."
    [44] S. O. Kasap, Principles of electronic materials and devices: Tata McGraw-Hill, 2006.

    下載圖示 校內:2023-08-30公開
    校外:2023-08-30公開
    QR CODE