簡易檢索 / 詳目顯示

研究生: 蘇歆茹
Su, Hsin-Ju
論文名稱: 賦權還是削權?科技智庫之AI─研究員協作
Empowerment or Disempowerment? Rethinking Researcher-AI Collaboration in Technology Think Tanks
指導教授: 黃振皓
Huang, Chen-Hao
學位類別: 碩士
Master
系所名稱: 管理學院 - 企業管理學系
Department of Business Administration
論文出版年: 2025
畢業學年度: 113
語文別: 中文
論文頁數: 118
中文關鍵詞: 賦權削權邊界管理AI與人的協作個案研究
外文關鍵詞: Empowerment, Disempowerment, Boundary Spanning, Human-AI Collaboration, Case Study
相關次數: 點閱:8下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來全球AI技術發展快速變遷,許多企業也紛紛導入AI系統並應用在工作流程中,在過去,此項技術領域的應用主要在勞動密集產業,協助企業優化自動化生產流程方面以達到效率最佳化。然而,隨著RAG技術的突破性發展,AI應用在過去三年間已擴展至知識密集產業,涵蓋醫療、設計、教育、軟體開發和研究領域。在賦予使用者和企業組織能力的同時,也衍生出削權及人力取代的隱憂。
    本研究旨在探索公部門組織如何利用人機協作形塑邊界跨越,故採用質性研究方法中的個案研究法,以「國家實驗研究院麾下的科技政策中心」為個案研究對象。為了探討AI科技推動公部門智慧轉型的過程,本研究透過「邊界跨越」及「賦權」的理論基礎,加上個案資料的蒐集與科政中心進行深入訪談後的訪談內容,來分析「國家智庫引入AI科技的階段性過程及發展歷程」。
    根據本研究結果的發現,AI技術的運用不單僅可以讓組織效率提升,同時可以達成人與AI協作的應用和諧。公部門組織在引入AI科技之前,需要先了解當前遇到的困難與挑戰,並針對該項痛點選用最合適的AI技術。在確認AI技術的選用以及明訂目標為解決何種痛點之後,其AI技術的賦權即為邊界跨越的型為可能可以取得具體的結果;經過組織的一再實際行動與結果回饋後,達成直接具體結果的實現。其實現結果不僅解決了當初的目標痛點實現了公部門組織智慧化,在達成智慧化的同時,組織亦在賦權和削權的平衡上形塑出研究員與AI和諧共存的人機協作模式。

    Global AI technology has rapidly evolved, with enterprises increasingly integrating AI systems into their workflows. Initially concentrated in labor-intensive industries for production optimization, AI applications have expanded to knowledge-intensive sectors including healthcare, design, education, software development, and research, especially following RAG technology breakthroughs. While empowering organizations, this also raises concerns about human displacement.
    This study explores how public sector organizations use human-AI collaboration for boundary spanning, using a case study approach with Taiwan's Science and Technology Policy Research Center. Based on "boundary spanning" and "empowerment" theories, combined with interviews and data collection, the research analyzes how national think tanks introduce AI technology.
    Findings show that AI implementation not only improves organizational efficiency but enables harmonious human-AI collaboration. Public organizations must first identify current challenges and select appropriate AI solutions for specific problems. Once AI technology is confirmed and objectives defined, empowerment through AI can achieve concrete boundary spanning results. Through continuous organizational action and feedback, organizations solve original pain points while achieving smart transformation and establishing balanced human-AI collaborative models.

    摘要 I 目錄 VII 表目錄 X 圖目錄 XI 第一章 緒論 1 第一節 研究背景與動機 1 第二節 研究問題與目的 3 第三節 研究範圍與流程 4 第四節 論文架構 5 第二章 文獻回顧 6 第一節 邊界理論 (Boundary Theory) 6 一、 數據邊界 (Digital Boundary) 9 二、 知識邊界 (Knowledge Boundary) 11 三、 經驗邊界 (Experience Boundary) 12 第二節 賦權(Empowerment) 16 一、 心理賦權(Psychological Empowerment) 17 二、 結構賦權(Structural Empowerment) 18 三、 資源賦權 (Resource Empowerment) 21 四、 賦權理論的實際應用與削權(Disempowerment) 22 第三節 人與AI之間的互動 25 一、 AI的定義(Definition of Artificial Intelligence) 25 二、 人機協作(Human-Machine Collaboration) 36 三、 人與AI之間的協作(Human-AI Collaboration) 37 第三章 研究方法與架構 45 第一節 研究方法 45 一、 質性研究 48 二、 個案研究 49 第二節 研究架構 53 第三節 研究觀察重點 53 第四節 研究對象 56 第五節 資料蒐集與分析 57 一、 資料蒐集 57 二、 資料分析 59 第四章 個案描述 62 第一節 產業背景 62 一、 全球背景下的AI發展沿革 62 二、 台灣的AI產業發展沿革 63 三、 台灣公部門領域AI應用的發展及未來挑戰 64 第二節 個案背景 66 一、 個案組織介紹與發展沿革 66 二、 個案組織的科技技術發展歷程 67 第五章 個案分析 71 第一節 Bigdata數據基礎建置期 71 一、 邊界挑戰:數據邊界跨越 71 二、 賦權應用:資源賦權 73 三、 人機協作:系統依賴人類 74 四、 數據基礎建設期小結 75 第二節 LLM語言模型導入期 77 一、 邊界挑戰:知識邊界跨越 77 二、 賦權應用:心理賦權 80 三、 人機協作:相互依存 80 四、 語言模型導入期小結 81 第三節 RAG檢索增強生成期 84 一、 邊界挑戰:經驗邊界跨越 84 二、 賦權應用:結構賦權 86 三、 檢索增強生成期小結 87 第六章 研究結論與建議 91 第一節 研究結論與貢獻 91 第二節 研究限制與未來研究方向建議 92 參考文獻 94 英文文獻 94 中文文獻 103 附錄A訪談問題彙整 105

    英文文獻
    Agbadamasi, T., Opoku, L. K., Adukpo, T. K., & Mensah, N. (2025). The role of business intelligence in AI ethics: Empowering US companies to achieve transparent and responsible AI. EPRA International Journal of Economics, Business and Management Studies (EBMS), 12(3), 8-14.
    Akkerman, S. F., & Bakker, A. (2011). Boundary crossing and boundary objects. Review of educational research, 81(2), 132-169.
    Alessandro, G., Dimitri, O., Cristina, B., & Anna, M. (2025). The emotional impact of generative AI: negative emotions and perception of threat. Behaviour & Information Technology, 44(4), 676-693.
    Allen, T., Beham, B., Ollier-Malaterre, A., Baierl, A., Alexandrova, M., Beauregard, A., Carvalho, V. S., Chambel, M. J., Cho, E., & da Silva, B. C. (2024). Boundary management preferences from a gender and cross-cultural perspective. Journal of Vocational Behavior, 148, 103943.
    Ameen, N., Pagani, M., Pantano, E., Cheah, J. H., Tarba, S., & Xia, S. (2025). The rise of human–machine collaboration: managers’ perceptions of leveraging artificial intelligence for enhanced B2B service recovery. British Journal of Management, 36(1), 91-109.
    Aspers, P., & Corte, U. (2019). What is qualitative in qualitative research. Qualitative sociology, 42, 139-160.
    Bales, A. (2024). AI takeover and human disempowerment. The Philosophical Quarterly, pqae034.
    Bankins, S., Ocampo, A. C., Marrone, M., Restubog, S. L. D., & Woo, S. E. (2024). A multilevel review of artificial intelligence in organizations: Implications for organizational behavior research and practice. Journal of organizational behavior, 45(2), 159-182.
    Biron, M., & Bamberger, P. (2010). The impact of structural empowerment on individual well-being and performance: Taking agent preferences, self-efficacy and operational constraints into account. human relations, 63(2), 163-191.
    Brown, O., Davison, R. M., Decker, S., Ellis, D. A., Faulconbridge, J., Gore, J., Greenwood, M., Islam, G., Lubinski, C., & MacKenzie, N. (2024). Theory-driven perspectives on generative artificial intelligence in business and management. British Journal of Management, 35(1), 3-23.
    Busse, C., Kach, A. P., & Wagner, S. M. (2017). Boundary conditions: What they are, how to explore them, why we need them, and when to consider them. Organizational Research Methods, 20(4), 574-609.
    Carless, S. A. (2004). Does psychological empowerment mediate the relationship between psychological climate and job satisfaction? Journal of business and psychology, 18, 405-425.
    Carlile, P. R. (2004). Transferring, translating, and transforming: An integrative framework for managing knowledge across boundaries. Organization science, 15(5), 555-568.
    Choudhary, V., Marchetti, A., Shrestha, Y. R., & Puranam, P. (2025). Human-AI ensembles: when can they work? Journal of Management, 51(2), 536-569.
    Conger, J. A., & Kanungo, R. N. (1988). The empowerment process: Integrating theory and practice. Academy of management review, 13(3), 471-482.
    Corbin, J. (2017). Grounded theory. The Journal of Positive Psychology, 12(3), 301-302.
    Cuconasu, F., Trappolini, G., Siciliano, F., Filice, S., Campagnano, C., Maarek, Y., Tonellotto, N., & Silvestri, F. (2024). The power of noise: Redefining retrieval for rag systems. Proceedings of the 47th International ACM SIGIR Conference on Research and Development in Information Retrieval,
    Deng, Z., Guo, Y., Han, C., Ma, W., Xiong, J., Wen, S., & Xiang, Y. (2025). Ai agents under threat: A survey of key security challenges and future pathways. ACM Computing Surveys, 57(7), 1-36. https://dl.acm.org/doi/full/10.1145/3716628
    Drozdal, J., Weisz, J., Wang, D., Dass, G., Yao, B., Zhao, C., Muller, M., Ju, L., & Su, H. (2020). Trust in AutoML: exploring information needs for establishing trust in automated machine learning systems. Proceedings of the 25th international conference on intelligent user interfaces,
    Edge, D., Trinh, H., Cheng, N., Bradley, J., Chao, A., Mody, A., Truitt, S., Metropolitansky, D., Ness, R. O., & Larson, J. (2024). From local to global: A graph rag approach to query-focused summarization. arXiv preprint arXiv:2404.16130.
    Fan, W., Ding, Y., Ning, L., Wang, S., Li, H., Yin, D., Chua, T.-S., & Li, Q. (2024). A survey on rag meeting llms: Towards retrieval-augmented large language models. Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining,
    Faraj, S., & Yan, A. (2009). Boundary work in knowledge teams. Journal of applied psychology, 94(3), 604.
    Faulconbridge, J., Sarwar, A., & Spring, M. (2023). How professionals adapt to artificial intelligence: The role of intertwined boundary work. Journal of Management Studies.
    Fernandez, S., & Moldogaziev, T. (2011). Empowering public sector employees to improve performance: does it work? The American Review of Public Administration, 41(1), 23-47.
    Fernandez, S., & Moldogaziev, T. (2013). Using employee empowerment to encourage innovative behavior in the public sector. Journal of public administration research and theory, 23(1), 155-187.
    Feuerriegel, S., Hartmann, J., Janiesch, C., & Zschech, P. (2024). Generative ai. Business & Information Systems Engineering, 66(1), 111-126.
    Figenschou, T., Li-Ying, J., Tanner, A., & Bogers, M. (2024). Open innovation in the public sector: A literature review on actors and boundaries. Technovation, 131, 102940.
    Fossey, E., Harvey, C., McDermott, F., & Davidson, L. (2002). Understanding and evaluating qualitative research. Australian & New Zealand journal of psychiatry, 36(6), 717-732.
    Gonzalez, C. (2013). The boundaries of Instance-Based Learning Theory for explaining decisions from experience. Progress in brain research, 202, 73-98.
    Gupta, S., Ranjan, R., & Singh, S. N. (2024). A comprehensive survey of retrieval-augmented generation (rag): Evolution, current landscape and future directions. arXiv preprint arXiv:2410.12837.
    Hammarberg, K., Kirkman, M., & De Lacey, S. (2016). Qualitative research methods: when to use them and how to judge them. Human reproduction, 31(3), 498-501.
    Hammersley, M. (2006). Ethnography: problems and prospects. Ethnography and education, 1(1), 3-14.
    Hanelt, A., Firk, S., Zapadka, P., & Oehmichen, J. (2025). Artificial intelligence boundary resources: a relational view on leveraging “AI-as-a-Service”. European Journal of Information Systems, 1-24.
    Hjaltalin, I. T., & Sigurdarson, H. T. (2024). The strategic use of AI in the public sector: A public values analysis of national AI strategies. Government information quarterly, 41(1), 101914.
    Hsu, J. S.-C., Chu, T.-H., Lin, T.-C., & Lo, C.-F. (2014). Coping knowledge boundaries between information system and business disciplines: An intellectual capital perspective. Information & management, 51(2), 283-295.
    Hummel, J. T., Berends, H., & Tuertscher, P. (2025). From Boundary Objects to Boundary Infrastructure: A Process Study of Collaboration Between Big Science and Big Business. Journal of Management Studies, 62(4), 1644-1679.
    Iannacci, J. (2018). Internet of things (IoT); internet of everything (IoE); tactile internet; 5G–A (not so evanescent) unifying vision empowered by EH-MEMS (energy harvesting MEMS) and RF-MEMS (radio frequency MEMS). Sensors and actuators a: physical, 272, 187-198.
    Jeong, C. (2024). A Study on the Implementation Method of an Agent-Based Advanced RAG System Using Graph. arXiv preprint arXiv:2407.19994.
    Jeong, S., Baek, J., Cho, S., Hwang, S. J., & Park, J. C. (2024). Adaptive-rag: Learning to adapt retrieval-augmented large language models through question complexity. arXiv preprint arXiv:2403.14403.
    Kabeer, N. (1999). Resources, agency, achievements: Reflections on the measurement of women's empowerment. Development and change, 30(3), 435-464.
    Kim, J. J., Soh, J., Kadkol, S., Solomon, I., Yeh, H., Srivatsa, A. V., Nahass, G. R., Choi, J. Y., Lee, S., & Nyugen, T. (2025). AI anxiety: a comprehensive analysis of psychological factors and interventions. AI and Ethics, 1-17.
    Knol, J., & Van Linge, R. (2009). Innovative behaviour: The effect of structural and psychological empowerment on nurses. Journal of advanced nursing, 65(2), 359-370.
    Kolbjørnsrud, V. (2024). Designing the Intelligent Organization: six principles for Human-AI collaboration. California Management Review, 66(2), 44-64.
    Lavie, S., & Swedenburg, T. (1996). Between and among the boundaries of culture: bridging text and lived experience in the third timespace. Cultural Studies, 10(1), 154-179.
    Leong, C. M. L., Pan, S. L., Ractham, P., & Kaewkitipong, L. (2015). ICT-enabled community empowerment in crisis response: Social media in Thailand flooding 2011. Journal of the Association for Information Systems, 16(3), 1.
    Li, Y., Li, Y., Chen, Q., & Chang, Y. (2024). Humans as teammates: The signal of human–AI teaming enhances consumer acceptance of chatbots. International Journal of Information Management, 76, 102771.
    Liao, K., & Liu, J. (2024). Digital infrastructure empowerment and urban carbon emissions: Evidence from China. Telecommunications Policy, 48(6), 102764.
    Mergel, I., Dickinson, H., Stenvall, J., & Gasco, M. (2024). Implementing AI in the public sector. Public Management Review, 1-14.
    Mesker, P., Wassink, H., Akkerman, S., & Bakker, C. (2018). Differences that matter: Boundary experiences in student teachers’ intercultural learning. International Journal of Intercultural Relations, 64, 54-66.
    Monje-Amor, A., Xanthopoulou, D., Calvo, N., & Vázquez, J. P. A. (2021). Structural empowerment, psychological empowerment, and work engagement: A cross-country study. European Management Journal, 39(6), 779-789.
    Monod, E., Mayer, A.-S., Straub, D., Joyce, E., & Qi, J. (2024). From worker empowerment to managerial control: The devolution of AI tools' intended positive implementation to their negative consequences. Information and Organization, 34(1), 100498.
    Mumuni, A., & Mumuni, F. (2024). Automated data processing and feature engineering for deep learning and big data applications: a survey. Journal of Information and Intelligence.
    Noy, S., & Zhang, W. (2023). Experimental evidence on the productivity effects of generative artificial intelligence. Science, 381(6654), 187-192.
    Pan, S. L., & Tan, B. (2011). Demystifying case research: A structured–pragmatic–situational (SPS) approach to conducting case studies. Information and Organization, 21(3), 161-176.
    Perkins, D. D., & Zimmerman, M. A. (1995). Empowerment theory, research, and application. American journal of community psychology, 23, 569-579.
    Przegalinska, A., Triantoro, T., Kovbasiuk, A., Ciechanowski, L., Freeman, R. B., & Sowa, K. (2025). Collaborative AI in the workplace: Enhancing organizational performance through resource-based and task-technology fit perspectives. International Journal of Information Management, 81, 102853.
    Rai, A., Constantinides, P., & Sarker, S. (2019). Next generation digital platforms: Toward human-AI hybrids. MIS quarterly, 43(1), iii-ix.
    Raisch, S., & Fomina, K. (2025). Combining human and artificial intelligence: Hybrid problem-solving in organizations. Academy of management review, 50(2), 441-464.
    Ridder, H.-G. (2017). The theory contribution of case study research designs. Business research, 10, 281-305.
    Rodwell, C. M. (1996). An analysis of the concept of empowerment. Journal of advanced nursing, 23(2), 305-313.
    Rofcanin, Y., Wang, S., Heras, M. L., Taser, D., Bosch, M. J., Fındıklı, M. A., & Vallina, A. S. (2024). Perceptions of support trickle down: Effects on energetic resources via psychological empowerment. European Management Review, 21(2), 477-490.
    Sahadev, S., Chang, K., Malhotra, N., Kim, J.-H., Ahmed, T., & Kitchen, P. (2024). Psychological empowerment and creative performance: Mediating role of thriving and moderating role of competitive psychological climate. Journal of Business Research, 170, 114310.
    Santos, F. M., & Eisenhardt, K. M. (2005). Organizational boundaries and theories of organization. Organization science, 16(5), 491-508.
    Seeber, I., Bittner, E., Briggs, R. O., De Vreede, T., De Vreede, G.-J., Elkins, A., Maier, R., Merz, A. B., Oeste-Reiß, S., & Randrup, N. (2020). Machines as teammates: A research agenda on AI in team collaboration. Information & management, 57(2), 103174.
    Sowa, K., Przegalinska, A., & Ciechanowski, L. (2021). Cobots in knowledge work: Human–AI collaboration in managerial professions. Journal of Business Research, 125, 135-142.
    Spreitzer, G. M. (1995). Psychological empowerment in the workplace: Dimensions, measurement, and validation. Academy of management Journal, 38(5), 1442-1465.
    Sun, X., & Song, Y. (2025). Unlocking the Synergy: Increasing productivity through Human-AI collaboration in the industry 5.0 Era. Computers & Industrial Engineering, 200, 110657.
    Swift, C., & Levin, G. (1987). Empowerment: An emerging mental health technology. Journal of primary prevention, 8, 71-94.
    Thomas, K. W., & Velthouse, B. A. (1990). Cognitive elements of empowerment: An “interpretive” model of intrinsic task motivation. Academy of management review, 15(4), 666-681.
    Tilly, C. (2004). Social boundary mechanisms. Philosophy of the social sciences, 34(2), 211-236.
    Turing, A. M. (2009). Computing machinery and intelligence. Springer.
    Tushman, M. L. (1977). Special boundary roles in the innovation process. Administrative science quarterly, 587-605.
    Van Manen, M. (2017). But is it phenomenology? In (Vol. 27, pp. 775-779): Sage Publications Sage CA: Los Angeles, CA.
    Waardenburg, L., & Huysman, M. (2022). From coexistence to co-creation: Blurring boundaries in the age of AI. Information and Organization, 32(4), 100432.
    Wagner, J. I., Cummings, G., Smith, D. L., Olson, J., Anderson, L., & Warren, S. (2010). The relationship between structural empowerment and psychological empowerment for nurses: a systematic review. Journal of nursing management, 18(4), 448-462.
    Wang, D., Churchill, E., Maes, P., Fan, X., Shneiderman, B., Shi, Y., & Wang, Q. (2020). From human-human collaboration to Human-AI collaboration: Designing AI systems that can work together with people. Extended abstracts of the 2020 CHI conference on human factors in computing systems,
    Wang, D., Weisz, J. D., Muller, M., Ram, P., Geyer, W., Dugan, C., Tausczik, Y., Samulowitz, H., & Gray, A. (2019). Human-AI collaboration in data science: Exploring data scientists' perceptions of automated AI. Proceedings of the ACM on human-computer interaction, 3(CSCW), 1-24.
    Wang, H., Li, J., Wu, H., Hovy, E., & Sun, Y. (2023). Pre-trained language models and their applications. Engineering, 25, 51-65.
    Xi, Z., Chen, W., Guo, X., He, W., Ding, Y., Hong, B., Zhang, M., Wang, J., Jin, S., & Zhou, E. (2025). The rise and potential of large language model based agents: A survey. Science China Information Sciences, 68(2), 121101. https://link.springer.com/article/10.1007/s11432-024-4222-0
    Xiong, G., Jin, Q., Wang, X., Fang, Y., Liu, H., Yang, Y., Chen, F., Song, Z., Wang, D., & Zhang, M. (2025). Rag-gym: Optimizing reasoning and search agents with process supervision. arXiv preprint arXiv:2502.13957.
    Xu, H., Yuan, J., Zhou, A., Xu, G., Li, W., Ban, X., & Ye, X. (2024). Genai-powered multi-agent paradigm for smart urban mobility: Opportunities and challenges for integrating large language models (llms) and retrieval-augmented generation (rag) with intelligent transportation systems. arXiv preprint arXiv:2409.00494.
    Yang, J., Jin, H., Tang, R., Han, X., Feng, Q., Jiang, H., Zhong, S., Yin, B., & Hu, X. (2024). Harnessing the power of llms in practice: A survey on chatgpt and beyond. ACM Transactions on Knowledge Discovery from Data, 18(6), 1-32.
    Yang, Y., & Huang, C. (2025). Tree-based RAG-Agent Recommendation System: A Case Study in Medical Test Data. arXiv preprint arXiv:2501.02727.
    Yao, Q., Hu, C., & Zhou, W. (2024). The impact of customer privacy concerns on service robot adoption intentions: A credence/experience service typology perspective. Technological Forecasting and Social Change, 198, 122948.
    Yin, R. K. (2014). Robert K. Yin.(2014). Case Study Research Design and Methods. Canadian Journal of Program Evaluation, 30(1), 108-110.
    Zeng, S., Zhang, J., He, P., Xing, Y., Liu, Y., Xu, H., Ren, J., Wang, S., Yin, D., & Chang, Y. (2024). The good and the bad: Exploring privacy issues in retrieval-augmented generation (rag). arXiv preprint arXiv:2402.16893.
    中文文獻
    畢恆達. (2010). 教授為什麼沒告訴我: 2010 全見版. 小畢空間.
    劉紹華. (2016). 我的凉山兄弟 (Vol. 8). 北京: 中央编译出版社.
    蕭瑞麟. (2020). 不用數字的研究: 質性研究的思辯脈絡. 五南圖書出版股份有限公

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE