簡易檢索 / 詳目顯示

研究生: 古宗達
Ku, Tsung-Ta
論文名稱: 以有限元素法分析輕度解離性腰薦椎滑脫經後方內固定手術後之脊椎生物力學影響
Finite Element Analysis of Spinal Biomechanics for Low-Grade Spondylolytic Spondylolisthesis after Posterior Spinal Fixation
指導教授: 胡宣德
Hu, Hsuan-Teh
黃國淵
Huang, Kuo-Yuan
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 110
中文關鍵詞: 椎弓解離滑脫有限元素
外文關鍵詞: spondylolysis, spondylolisthesis, finite element
相關次數: 點閱:79下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 脊椎為支撐人體重量及運動的重要結構,由上至下可分為頸椎七節、胸椎十二節、腰椎五節、薦椎五節及尾椎骨。上下兩椎節間左右兩側有小面關節囊包覆連接,可用來抵抗扭矩及剪力。當椎節或小面關節先天不良或受傷而造成斷裂時,可能會使上下兩椎節分離。若左右兩側椎弓皆斷裂時,稱為椎弓解離,此時會造成患者的活動度降低。若是椎體再受重力作用而向前滑出,即是「脊椎滑脫症」,通常發生於第五腰椎及第一薦椎之間,且時常伴隨椎間盤退化的情形發生。

    本文使用MSC.Patran作為有限元素前處理軟體,ABAQUS為後處理軟體,分析在腰薦角為40度時,第五腰椎及第一薦椎的滑脫情形,並細分為椎弓解離、一級滑脫、二級滑脫三種情況加以探討。治療方式為使用內固定系統配合PEEK與鈦材質的椎籠,分別固定第四腰椎至第一薦椎(打三節骨釘)以及第五腰椎至第一薦椎(打兩節骨釘)之間來分析討論,椎籠則統一植入第五腰椎第一薦椎間,並搭配四種運動情形(後仰、前彎、側彎、扭轉)來探討椎間盤、螺釘與椎籠的應力、應變能密度和端板相對轉角,希望能在脊椎病變治療上,提供更正確的治療方向。

    本研究建立脊椎有限元素模型的步驟依次為,以電腦斷層掃描脊椎得DICOM影像檔,由醫學影像處理軟體3D-Doctor處理成STL平滑曲面檔,再以MSC.Patran修整模型的幾何外型、給定材料性質、設定邊界條件及施加負載後,生成有限元素實體模型,最後交由ABAQUS有限元素軟體求解。

    The Spine is an important structure of the human body for supporting body weight and movement, from top to bottom, it can be divided into 7 cervical vertebrae, 12 thoracic vertebrae, 5 lumbar vertebrae, 5 sacral vertebrae and coccyx. The facet joints, which lie between upper and lower vertebrae, are located at both left and right sides of the posterior arch of the vertebra and can be used to resist torque and shear force. When the vertebrae or the facet joints suffered from congenital defects or injuries, it may lead to the separation of upper and lower adjacent vertebrae. When both sides of the posterior arch of the vertebra fractured, it is well known as” spondylolysis “ and usually causes patients to reduce their activities. If the injured vertebra subjected to gravity load to slide forward, it is called “spondylolisthesis”, usually occurring at L5-S1 level, and accompanies with the diseases of disc degeneration.

    This study used MSC.Patran as the pre-processing tool and ABAQUS as finite element program solver to analyze the slippage between the fifth lumbar vertebra L5 and the sacrum S1 with the lumbosacral angle 40 degrees under three cases: spondylolysis, grade 1 and grade 2 of spondylolisthesis. The ways to treat the above cases were uses of the internal fixation systems, 2 or 3 segments, PEEK or titanium material of the cage, and both L4-S1 and L5-S1 levels were analyzed and discussed. The cage was inserted at L5-S1 level and four movements like extension, flexion, lateral bending and axial rotation were considered. This study explored the maximum von Mises stress, strain energy density, distributing among the intervertebral discs, screws and vertebral cage, and relative rotation angle of the endplates, and hoped that this investigation would provide more accurate treatment of spinal diseases.
    This study established an finite element model of the lumbosacral spine by a series of processing steps as follows: getting the DICOM images from the CT scan, handling by the medical image processing software 3D-Doctor to obtain a smooth surface STL format profile, trimming model on the geometry, setting material properties, boundary conditions and the loads in MSC.Patran, and then creating an executable finite element model, and finally, putting this model into ABAQUS for solving.

    目錄 摘要 I Abstract II 誌謝 IV 目錄 V 表目錄 VIII 圖目錄 IX 第一章 緒論 1 1-1 前言 1 1-2 研究動機與目的 2 1-3 文獻回顧 4 1-4 有限元素法(Finite Element Method) 4 1-5 FEM在醫學工程上之應用 5 第二章 脊椎 6 2-1 脊椎的結構 6 2-2 脊椎組成 6 2-3 內固定系統 23 2-4 有限元素參數 26 第三章 病變種類 27 3-1 病變種類 27 3-2 治療方式 30 第四章 電腦輔助建立腰薦椎有限元素模型 36 4-1 前言 36 4-2 醫學影像軟體 37 4-3 建立有限元素模型 38 4-4 建模 39 4-4.1 網格篩選 40 4-4.2 建立各種元素 41 4-4.3 材料性質 47 4-4.4 組成元素 49 4-4.5 邊界條件與負載方式 51 第五章 收斂性分析 59 5-1 前言 59 5-2 有限元素模型 59 5-3 驗證 61 5-4 模型確立 66 第六章 分析結果與討論 70 6-1 分析方向 70 6-2 最大應力 72 6-2.1 最大應力小結:IVD5S 74 6-2.2 最大應力小結:IVD45 77 6-2.3 最大應力小結:椎弓螺釘 79 6-2.4 最大應力小結:椎籠 80 6-3 最大應變能密度 81 6-3.1 最大應變能密度小結:IVD5S 83 6-3.2 最大應變能密度小結:IVD45 86 6-3.3 最大應變能密度小結:椎籠 87 6-4 端板轉角 87 6-4.1 端板轉角小結:L4上端板 89 6-4.2 端板轉角小結:L5上端板 92 6-4.3 端板轉角小結:S1上端板 94 6-5 端板相對轉角 94 6-5.1 相對轉角小結:IVD5S 97 6-5.2 相對轉角小結:IVD45 99 第七章 結論與建議 100 7-1 結論 100 7-2 未來展望 102 參考文獻 104 表目錄 表1.1 本研究使用模型 3 表2.1 各文獻所採用的皮質骨材料參數 11 表2.2 各文獻所採用的海綿骨材料參數 12 表2.3 各文獻所採用的後骨材料參數 12 表2.4 各文獻所採用的髓核材料參數 14 表2.5 各文獻所採用的纖維環材料參數 15 表2.6 TAUT REGION起點與終點[36] 18 表2.7 TAUT REGION起點與終點[37] 19 表2.8 各個韌帶應力應變曲線使用參數[36] 20 表2.9 各個韌帶應力應變曲線使用參數[37] 20 表2.10 各個韌帶之Etaut (MPa) 21 表2.11 各個韌帶之ε 21 表2.12 本研究各個韌帶使用參數 21 表3.1 病患接受椎間融合手術追蹤結果 35 表4.1 本研究模型元素數量 47 表4.2 本研究使用的材料性質-1 48 表4.3 本研究使用的材料性質-2 49 表4.4 各部分元素及其斷面性質 49 表4.5 本研究使用的單位系統 53 表4.6 各種構件觀察項目 58 表6.1 代號對照表 71 圖目錄 圖2.1 人體脊椎結構圖 7 圖2.2 腰椎運動肢段的矢狀面示意圖 7 圖2.3 脊椎骨斷面圖 9 圖2.4 端板、軟骨板及椎間盤 10 圖2.5 椎間盤的組織結構圖 13 圖2.6 纖維環的纖維方向示意圖 15 圖2.7 脊椎各韌帶位置示意圖 17 圖2.9 透過方程式(1)所得之適合曲線(ISL、ALL) 20 圖2.10 本研究各個韌帶應力應變曲線 22 圖2.11 不同應變能函數之模擬與實驗數據之比較 23 圖3.1 脊椎融合手術示意圖 33 圖4.1 有限元素分析前處理流程 37 圖4.2 3D-Doctor建立三維表面模型步驟 38 圖4.3 MSC.Patran 前處理步驟 38 圖4.4 腰椎及薦椎實體模型 40 圖4.5以bar element進行MOM 40 圖4.6固定L4-S1的內固定系統 41 圖4.7 椎籠生成實體元素 42 圖4.8 椎體實體元素 42 圖4.9 螺釘植入椎體後重新生成實體元素 42 圖4.10 椎體周邊各種韌帶 43 圖4.11 椎間盤構造及其組成元素 45 圖4.12 一級滑脫腰薦椎有限元素模型 45 圖4.13 一級滑脫經內固定系統治療腰薦椎有限元素模型 46 圖4.14 模擬手術後的海綿骨(左)與後骨(右) 46 圖4.16 邊界條件設定 52 圖4.17 預載施加於L4上端板 56 圖4.18 伸展和彎曲的加載方式 56 圖4.19 側彎和扭轉的加載方式 56 圖4.20 椎體轉角方向定義 56 圖4.21彎曲或伸展動作椎間轉角計算方式 57 圖5.1(a) GEL = 0.6 mm螺釘模型 59 圖5.1(b) GEL = 0.8 mm 螺釘模型 60 圖5.1(c) GEL = 1 mm螺釘模型 60 圖5.1(d) GEL = 1.2 mm螺釘模型 60 圖5.2(c) GEL = 1 mm 椎籠模型 61 圖5.3 螺釘應力收斂性分析 62 圖5.4 螺釘最大位移收斂性分析 62 圖5.5 椎籠應力收斂性分析 63 圖5.6 椎籠最大位移收斂性分析 63 圖5.7(a) GEL = 0.6 mm 螺釘應力分佈圖 64 圖5.7(b) GEL = 0.8 mm螺釘應力分佈圖 64 圖5.7(c) GEL = 1 mm 螺釘應力分佈圖 64 圖5.8(a) GEL = 0.6 mm螺釘位移分佈圖 64 圖5.8(b) GEL = 0.8 mm螺釘位移分佈圖 64 圖5.8(c) GEL = 1 mm螺釘位移分佈圖 64 圖5.7(d) GEL = 1.2 mm 螺釘應力分佈圖 64 圖5.9(a) GEL = 0.6 mm 椎籠應力分佈圖 65 圖5.9(b) GEL = 0.8 mm 椎籠應力分佈圖 65 圖5.9(c) GEL = 1 mm 椎籠應力分佈圖 65 圖5.9(d) GEL = 1.2 mm 椎籠應力分佈圖 66 圖5.10(a) GEL = 0.6 mm 椎籠位移分佈圖 65 圖5.10(b) GEL = 0.8 mm 椎籠位移分佈圖 65 圖5.10(c) GEL = 1 mm 椎籠位移分佈圖 65 圖5.10(d) GEL = 1.2 mm 椎籠位移分佈圖 66 圖5.11 移除受損椎間盤填入椎籠示意圖 66 圖5.12(a) 正常模型原始狀態 67 圖5.12(b) 正常狀態固定兩節 67 圖5.12(c) 正常狀態固定三節 67 圖5.13(a) 解離模型原始狀態 67 圖5.13(b) 解離狀態固定兩節 67 圖5.13(c) 解離狀態固定三節 67 圖5.14(a) 一級滑脫原始狀態 68 圖5.14(b) 一級滑脫固定兩節 68 圖5.14(c) 一級滑脫固定兩節植入椎籠 69 圖5.14(d) 一級滑脫固定三節 69 圖5.14(e) 一級滑脫固定三節植入椎籠 69 圖5.15(a) 二級滑脫原始狀態 68 圖5.15(b) 二級滑脫固定兩節 68 圖5.15(c) 二級滑脫固定兩節植入椎籠 68 圖5.15(d) 二級滑脫固定三節 68 圖5.15(e) 二級滑脫固定三節植入椎籠 68 圖6.1(a) Ext- IVD5S-應力 72 圖6.1(b) Flx- IVD5S-應力 72 圖6.1(c) LB- IVD5S-應力 72 圖6.1(d) AR- IVD5S-應力 72 圖6.2(a) Ext-Gr.1-IVD5S-應力 73 圖6.2(b) Flx-Gr.1-IVD5S-應力 73 圖6.2(c) LB-Gr.1-IVD5S-應力 73 圖6.2(d) AR-Gr.1-IVD5S-應力 73 圖6.3(a) Ext-Gr.2-IVD5S-應力 73 圖6.3(b) Flx-Gr.2-IVD5S-應力 73 圖6.3(c) LB-Gr.2-IVD5S-應力 74 圖6.3(d) AR-Gr.2-IVD5S-應力 74 圖6.4 (a) Ext- IVD45-應力 75 圖6.4(b) Flx- IVD45-應力 75 圖6.4(c) LB- IVD45-應力 75 圖6.4(d) AR-IVD45-應力 75 圖6.5(a) Ext-Gr.1- IVD5S-應力 75 圖6.5(b) Flx-Gr.1-IVD5S-應力 75 圖6.5(c) LB-Gr.1-IVD5S-應力 76 圖6.5(d) AR-Gr.1- IVD5S-應力 76 圖6.6(a) Ext-Gr.2- IVD5S-應力 76 圖6.6(b) Flx-Gr.2- IVD5S-應力 76 圖6.6(c) LB-Gr.2-IVD5S-應力 76 圖6.6(d) AR-Gr.2-IVD5S-應力 76 圖6.7(a) Ext-螺釘-應力 77 圖6.7(b) Flx-螺釘-應力 77 圖6.7(c) LB-螺釘-應力 77 圖6.7(d) AR-螺釘-應力 77 圖6.8(a) Ext-Gr.1-螺釘-應力 78 圖6.8(b) Flx-Gr.1-螺釘-應力 78 圖6.8(c) LB-Gr.1-螺釘-應力 78 圖6.8(d) AR-Gr.1-螺釘-應力 78 圖6.9(a) Ext-Gr.2-螺釘-應力 78 圖6.9(b) Flx-Gr.2-螺釘-應力 78 圖6.9(c) LB-Gr.2-螺釘-應力 79 圖6.9(d) AR-Gr.2-螺釘-應力 79 圖6.10(a) Gr.1-固定兩節-椎籠-應力 80 圖6.10(b) Gr.2-固定兩節-椎籠-應力 80 圖6.10(c) Gr.1-固定三節-椎籠-應力 80 圖6.10(d) Gr.2-固定三節-椎籠-應力 80 圖6.11(a) Ext-IVD5S-SED 81 圖6.11(b) Flx-IVD5S-SED 81 圖6.11(c) LB-IVD5S-SED 81 圖6.11(d) AR-IVD5S-SED 81 圖6.12(a) Ext-Gr.1-IVD5S-SED 82 圖6.12(b) Ext-Gr.1-IVD5S-SED 82 圖6.12(c) LB-Gr.1-IVD5S-SED 82 圖6.12(d) AR-Gr.1-IVD5S-SED 82 圖6.13(a) Ext-Gr.2-IVD5S-SED 82 圖6.13(b) Ext-Gr.2-IVD5S-SED 82 圖6.13(c) LB-Gr.2-IVD5S-SED 83 圖6.13(d) AR-Gr.2-IVD5S-SED 83 圖6.14(a) Ext-IVD45-SED 84 圖6.14(b) Flx-IVD45-SED 84 圖6.14(c) LB-IVD45-SED 84 圖6.14(d) AR-IVD45-SED 84 圖6.15(a) Ext-Gr.1-IVD45-SED 84 圖6.15(b) Ext-Gr.1-IVD45-SED 84 圖6.15(c) LB-Gr.1-IVD45-SED 85 圖6.15(d) AR-Gr.1-IVD45-SED 85 圖6.16(a) Ext-Gr.2-IVD45-SED 85 圖6.16(b) Ext-Gr.2-IVD45-SED 85 圖6.16(c) LB-Gr.2-IVD45-SED 85 圖6.16(d) AR-Gr.2-IVD45-SED 85 圖6.17(a) Gr.1-固定兩節-椎籠-SED 86 圖6.17(b) Gr.2-固定兩節-椎籠-SED 86 圖6.17(c) Gr.1-固定兩節-椎籠-SED 86 圖6.17(d) Gr.2-固定兩節-椎籠-SED 86 圖6.18(a) Ext-L4 Top EP-轉角 87 圖6.18(b) Flx- L4 Top EP-轉角 87 圖6.18(c) LB-L4 Top EP-轉角 88 圖6.18(d) AR- L4 Top EP-轉角 88 圖6.19(a) Ext-Gr.1-L4 Top EP-轉角 88 圖6.19(b) Flx-Gr.1-L4 Top EP-轉角 88 圖6.19(c) LB-Gr.1-L4 Top EP-轉角 88 圖6.19(d) AR-Gr.1-L4 Top EP-轉角 88 圖6.20(a) Ext-Gr.2-L4 Top EP-轉角 89 圖6.20(b) Flx-Gr.2-L4 Top EP-轉角 89 圖6.20(c) LB-Gr.2-L4 Top EP-轉角 89 圖6.20(d) AR-Gr.2-L4 Top EP-轉角 89 圖6.21(a) Ext-L5 Top EP-轉角 90 圖6.21(b) Flx- L5 Top EP-轉角 90 圖6.21(c) LB-L5 Top EP-轉角 90 圖6.21(d) AR- L5 Top EP-轉角 90 圖6.22(a) Ext-Gr.1-L5 Top EP-轉角 90 圖6.22(b) Flx-Gr.1-L5 Top EP-轉角 90 圖6.22(c) LB-Gr.1-L5 Top EP-轉角 91 圖6.22(d) AR-Gr.1-L5 Top EP-轉角 91 圖6.23(a) Ext-Gr.2-L5 Top EP-轉角 91 圖6.23(b) Flx-Gr.2-L5 Top EP-轉角 91 圖6.23(c) LB-Gr.2-L5 Top EP-轉角 91 圖6.23(d) AR-Gr.2-L5 Top EP-轉角 91 圖6.24(a) Ext-S1 Top EP-轉角 92 圖6.24(b) Flx-S1 Top EP-轉角 92 圖6.24(c) LB-S1 Top EP-轉角 92 圖6.24(d) AR-S1 Top EP-轉角 92 圖6.25(a) Ext-Gr.1-S1 Top EP-轉角 93 圖6.25(b) Flx-Gr.1-S1 Top EP-轉角 93 圖6.25(c) LB-Gr.1-S1 Top EP-轉角 93 圖6.25(d) AR-Gr.1-S1 Top EP-轉角 93 圖6.26(a) Ext-Gr.2-S1 Top EP-轉角 93 圖6.26(b) Flx-Gr.2-S1 Top EP-轉角 93 圖6.26(c) LB-Gr.2-S1 Top EP-轉角 94 圖6.26(d) AR-Gr.2-S1 Top EP-轉角 94 圖6.27(a) Ext-IVD5S-相對轉角 95 圖6.27(b) Flx-IVD5S-相對轉角 95 圖6.27(c) LB-IVD5S-相對轉角 95 圖6.27(d) AR-IVD5S-相對轉角 95 圖6.28(a) Ext-Gr.1-IVD5S-相對轉角 95 圖6.28(b) Flx-Gr.1-IVD5S-相對轉角 95 圖6.28(c) LB-Gr.1-IVD5S-相對轉角 96 圖6.28(d) AR-Gr.1-IVD5S-相對轉角 96 圖6.29(a) Ext-Gr.2-IVD5S-相對轉角 96 圖6.29(b) Flx-Gr.2-IVD5S-相對轉角 96 圖6.29(c) LB-Gr.2-IVD5S-相對轉角 96 圖6.29(d) AR-Gr.2-IVD5S-相對轉角 96 圖6.30(a) Ext-IVD45-相對轉角 97 圖6.30(b) Flx-IVD45-相對轉角 97 圖6.30(c) LB-IVD45-相對轉角 98 圖6.30(d) AR-IVD45-相對轉角 98 圖6.31(a) Ext-Gr.1-IVD45-相對轉角 98 圖6.31(b) Flx-Gr.1-IVD45-相對轉角 98 圖6.31(c) LB-Gr.1-IVD45-相對轉角 98 圖6.31(d) AR-Gr.1-IVD45-相對轉角 98 圖6.32(a) Ext-Gr.2-IVD45-相對轉角 99 圖6.32(b) Flx-Gr.2-IVD45-相對轉角 99 圖6.32(c) LB-Gr.2-IVD45-相對轉角 99 圖6.32(d) AR-Gr.2-IVD45-相對轉角 99

    [1] 趙逸民: '以有限元素法分析腰薦椎解離性滑脫後對脊椎生物力學之影響',土木工程研究所, 2011, 碩士論文.
    [2] Herbiniaux G, Traité sur divers accouchements laborieux, et sur les polypes de la matrice. Brussels, Belgium, JL Boubers, 1782.
    [3] Killian HF, Schilderungen neuer becken formen und ihres verhaltens im leben.
    Mannheim, Germany, Verlag von Bosserman, 1854.
    [4] Neugebauer FI: The classic: A new contribution to the history and etiology of spondyl-olisthesis by F. L. Neugebauer. Clin Orthop Relat Res 1976;117:4-22.
    [5] Fredrickson BE, Baker D, McHolick WJ, Yuan HA, Lubicky JP: The natural history of spondylolysis and spondylolisthesis. J Bone Joint Surg Am 1984, 66:699-707.
    [6] Saraste H: Long-term clinical and radiological follow-up of spondylolysis and spondylolisthesis. J Pediatr Orthop, 1987;7:631-638.
    [7] Beutler WJ, Fredrickson BE, Murtland A, Sweeney CA, Grant WD, Baker D:The natural history of spondylolysis and spondylolisthesis: 45-year follow-upevaluation. Spine (Phila Pa 1976) 2003;28:1027-1035.
    [8] Floman Y: Progression of lumbosacral isthmic spondylolisthesis in adults. Spine (Phila Pa 1976) 2000;25:342-347.
    [9] Soler T, Calderón C: The prevalence of spondylolysis in the Spanish elite athlete. Am J Sports Med 2000;28:57-62.
    [10] 林冠瑋: '電腦輔助脊椎之有限元素分析', 土木工程研究所, 2008, 碩士論文.
    [11] G. Henry: 'Grey's Anatomy', 1917.
    [12] M. Nordin and V. H. Frankel: 'Basic Biomechanics of the Musculoskeletal Sys-
    tem. Lippincott Williams and Wilkins', 2001.
    [13] Frankel, Victor H.: 'Basic biomechanics of the skeletal system', 1980
    [14] M.J. Silva, C. Wang, T.M. Keaveny1, W.C. Hayes: 'Direct and computed tomography thickness measurements of the human lumbar vertebral shelland endplate', Bone, 1994, 15(4), 409–414
    [15] W. III, A. A., and M. M. Panjabi: 'Clinical biomechanics of the spine', 1990.
    [16] A. Strayer: 'Lumbar Spine Surgery-A Guide to Preoperative and Postoperative
    Patient Care', AANN Reference Series for Clinical Practice.
    [17] R. D. Cook, D. S. Malkus, M. E. Plesha, and R. J. Witt: 'Concepts and applications of finite element analysis,fourth edition', 2002
    [18] C. Lee, Y. E. Kim, C. S. Lee, Y. M. Hong, J. Jung, and V. K. Goel: 'Impact response of the intevertebral disc in a finite element model', Spine, 2000, 25, 2431-2439.
    [19] J. T. M. Cheung, M. Zhang, and D. H. K. Chow: 'Biomechanical responses
    of the intervertebral joints to static and vibrational loading: a finite element
    study ', Clinical Biomechanics, 2003, 18, 790-799.
    [20] G. Baroud, J. Nemes, P. Heini, and T. Steffen: 'Load shift of the intervertebral-
    disc after a vertebroplasty: a finite-element study', European Spine Journal, 2003, 12(4), 421-426.
    [21] A. Polikeit, F. S. J., N. L. P., and O. T. E.: 'Factors influencing stresses in the
    lumbar spine after the insertion of intervertebral cages: finite element analysis', European Spine Journal, 2003, 12(4), 413-420.
    [22] G. Denozière: 'Numerical modeling of a ligamentous lumbar motion segment', PhD thesis, Georgia Institute of Technology, 2004.
    [23] A. Rohlmann, N. K. Burra, T. Zander, and G. Bergmann: 'Comparison of the effects of bilateral posterior dynamic and rigid fixation devices on the loads in the lumbar spine', European Spine Journal, 2007.
    [24] K. Sairyo, V. K. Goel, A. Masuda, S. Vishnubhotla, A. Faizan, A. Biyani, N. Ebraheim, D. Yonekura, R. I. Murakami, and T. Terai.: 'Three-dimensional finite element analysis of the pediatric lumbar spine', European Spine Journal, 2006, 15, 923-929.
    [25] J. L. Wang, M. Parnianpour, A. Shirazi-Adl, and A. E. Engin: 'Viscoelastic Finite Element Analysis of a Lumbar Motion Segment in Combined Compression and Sagittal Flexion: Effect of Loading Rate', Spine, 2000, 25(3), 310-318.
    [26] T. Pitzen, F. H. Geisler, D. Matthis, H. Müller-Storz, K. Pedersen, and W. I. Steudel: 'The influence of cancellous bone density on load sharing in human lumbar spine: a comparison between an intact and a surgically altered motion segment', European Spine Journal, 2001, 10(1), 23-29.
    [27] K. Goto, N. Tajima, E. Chosa, K. Totoribe, H. Kuroki, and Y. Arizumi: 'Mechanical analysis of the lumbar vertebrae in a three-dimensional finite element method model in which intradiscal pressure in the nucleus pulposus was used to establish the model', Journal of Orthopaedic Science, 2002, 7(2), 243-246.
    [28] R. N. Natarajan and G. B. J. Andersson: 'Modeling the annular incision in a herniated lumbar intervertebral disc to study its effect on disc stability', Computers Structures, 1997, 64(5-6), 1291-1297.

    [29] V. Mow and W. C. Hayes: 'Basic orthopaedic biomechanics', 1991.
    [30] S. Gwanseob: 'Viscoelastic responses of the lumbar spine during prolonged stooping', 2005, Ph. D. dissertation.
    [31] A. Glema, T. Lodygowski, W. Kakol, M. Wierszycki, and M. B. Ogurkowska: 'Modeling of intervertebral discs in the numerical analysis of spinal segment', ECCOMAS, 2004, 24-28.
    [32] M. A. Adams and W. C. Hutton: 'The effect of posture on the role of the apophysial joints in resisting intervertebral compressive forces', The Journal of Bone and Joint Surgery, 1980, 62-B(3), 368-362.
    [33] M. Sharma, N. A. Langrana, and J. Rodriguez: 'Role of ligaments and facets in lumbar spinal stability', Spine, 1995, 20(8), 887-900.
    [34] M. Sharma, N. A. Langrana, and J. Rodriguez: 'Modeling of facet articulation as a nonlinear moving contact problem: sensitivity study on lumbar facet response', Journal of Biomechanical Engineering, 1998, 120, 118-125.
    [35] Yang-Hwei Tsuang, Yueh-Feng Chianga,Chih-Yi Hung,Hung-Wen Wei,
    Chang-Hunag, Cheng-Kung Cheng: 'Comparison of cage application modality in posterior lumbar interbody fusion with posterior instrumentation—A finite element study', Medical Engineering & Physics, 2009, 31, 565-570.
    [36] J. Chazal, A. Tanguy, M. Bourges, G. Gaurel, G. Escande, M. Guillot, and G. Vanneuville: 'Biomechanical properties of spinal ligaments and a histological study of the supraspinal ligament in traction', Journal of Biomechanical Engineering, 1985, 18(3), 167-176.

    [37] S. A. Shirazi-Adl, A. M. Ahmed, and S. C. Shrivastava: 'A finite element study of a lumbar motion segment subjected to pure sagittal plane moments', Journal of Biomechanical Engineering, 1986, 19, 331-350.
    [38] H. W. Ng and E. C. Teo: 'Nonlinear Finite Element Analysis of the Lower Cervical Spine(C4-C6) Under Axial Loading', Journal of Spinal Disorders, 2001, 14(3), 201-210.
    [39] V. K. Goel, H. Park, and W. Kong: 'Investigation of vibration characteristics of ligamentous lumbar spine using the finite element approach', Journal of Biomechanical Engineering, 1994, 116, 377-383.
    [40] N. H. C. K.: 'Computational analysis of the time-dependent biomechanical behavior of the lumbar spine', PhD thesis, Ohio State University, 2004.
    [41] 魏超,楊惠林,王根林,陳亮等人,“椎間融合與環周融合結合椎弓根釘內固 定置入治療成人腰椎滑脫:效果優於外側融合嗎?”,中國組織工程研究與臨床康復, 第13卷52期, 2009
    [42] 劉哲榮: '後方腰椎間融合手術後應力重新分配之有限元素分析', 土木工
    程研究所, 2009, 碩士論文.
    [43] Thomas R. Jones, MD, PhD Raj D. Rao, MD: 'Review Article: Adult Isthmic
    Spondylolisthesis',J Am Acad Orthop Surg, 2009, 17(10), 609-617.
    [44] 楊璦菁: '椎弓斷裂之脊椎滑脫對鄰近節影響之有限元素分析', 土木工程
    研究所, 2010, 碩士論文.
    [45] Joseph L. Turner, MS, David J. Paller, MS, and Charles B. Murrell, BS, MBA:'The Mechanical Effect of Commercially Pure Titanium and Polyetheretherketone Rods on Spinal Implants at the Operative and Adjacent
    Levels', Spine, 2010, 35(21), pp E1076–E1082.
    [46] 謝牧鄰: '以CT斷層掃描影像為基礎之脊椎有限元素分析', 土木工程研
    究所, 2005, 碩士論文.
    [47] 林柏君: '電腦輔助腰椎之有限元素分析', 土木工程研究所, 2006, 碩士論
    文.
    [48] C. H. Chen: 'A Finite Element study of the Biomechanical Behavior of the
    Nonlinear Ligamentous Thoracic and Lumbar Spine', PhD thesis, National
    Cheng Kung University, 2007.
    [49] 蔡卓軒: '以有限元素法分析胸腰椎爆裂性骨折經後方脊椎內固定手術後
    對生物力學之影響', 土木工程研究所, 2011, 碩士論文.
    [50] 許宏維: '不同彈性帶預張力之動態脊椎內固定器DYNESYS對腰椎之生
    物力學效應─有限元素分析', 物理治療暨輔助科技學系, 2009, 碩士論
    文.
    [51] Dong Suk Shin, Kunwoo Lee, Daniel Kim: 'Biomechanical study of lumbar spine with dynamic stabilization device using finite element method', Computer-Aided Design, 2007, 39, 559–567.
    [52] J. G. R. Manuel and L. Y. S. G.: 'Comparison of hyperelastic material models in the analysis of fabrics', International Journal of Clothing Science and Technology, 2006, 18(5), 314-325.
    [53] I. Yamamoto, M. M. Panjabi, T. Crisco, and T. Oxland: 'Three-Dimensional Movements of the Whole Lumbar Spine and Lumbosacral Joint', Spine, 14(11), 1256-1260.
    [54] C. S. Chen, C. K. Cheng, C. L. Liu, and W. H. Lo: 'Stress analysis of the disc adjacent to inter-body fusion in lumbar', Medical Engineering & Physics, 2001, 23, 483-491.
    [55] S. D, P. M, and S. S: 'Intervertebral disc changes in adolescents with isthmic spondylolisthesis', J Spinal Disord, 1991, 4, 344-352.
    [56] S. S, S. D, and P. M: 'Disc degeneration in young patients with isthmic spondylolisthesis treated operatively or conservatively: a long-term follow-up', Eur Spine J, 1997, 6, 393-397.
    [57] Raghu N. Natarajan, PhD, Jamie R. Williams, PhD, and Gunnar B.J. Andersson, MD, PhD, and P. M: 'Modeling Changes in Intervertebral Disc Mechanics with Degeneration', The Journal of Bone And Joint Surgery, 2006, 88-A(2)

    下載圖示 校內:立即公開
    校外:2015-08-10公開
    QR CODE