| 研究生: |
顏榮賢 Yen, Jung-Hsien |
|---|---|
| 論文名稱: |
感應耦合電漿化學氣相沉積法成長奈米碳管之研究 Growth Characteristics of Carbon Nanotubes Prepared by ICP-CVD |
| 指導教授: |
洪敏雄
Hon, Min-Hsiung |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2005 |
| 畢業學年度: | 93 |
| 語文別: | 中文 |
| 論文頁數: | 141 |
| 中文關鍵詞: | 化學氣相沉積法 、感應耦合電漿 、陽極化氧化鋁模板 、奈米碳管 |
| 外文關鍵詞: | AAO, ICP-CVD, carbon nanotubes |
| 相關次數: | 點閱:117 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
摘要
本研究以感應耦合電漿化學氣相沉積法(ICP-CVD)結合矽基氧化鋁奈米模板成長順向奈米碳管陣列。利用製程參數的控制,提高奈米碳管的成長速率、結晶性、密度,並探討碳管結構、形態、密度對場發射性質的影響。
結果顯示,於ICP-CVD系統中,感應射頻功率和外加直流偏壓分別控制碳氫氣體的解離和離子至基板的通量,感應射頻功率增加,碳氫自由基和離子的濃度隨之提高;外加直流偏壓增加,則吸引更多離子至基板進行碳管的成長。成長其速率隨射頻功率、外加直流偏壓的增加而提升,在本研究條件下碳管最快成長速率為44.6 nm/min。
利用ICP-CVD結合矽基氧化鋁模板成長奈米碳管,藉由改變氧化鋁奈米模板的孔洞深度、孔徑、外加直流偏壓及觸媒前處理,可有效控制碳管的成長密度。成長密度和進入模板中之碳氫自由基及離子的通量及觸媒表面活性有關。此外,於場發射測試中發現碳管之成長密度在5×108 CNTs/cm2時具有最低之起始電場1.5 V/m,但成長密度在大於5×108 CNTs/cm2之後,場發射屏蔽效應隨之增加。
使用氧化鋁模板結合電鍍而成長(420 20 nm)的鐵、鈷及鎳奈米線做為觸媒,奈米碳管可完整包覆金屬奈米線。此外,奈米碳管的結構隨奈米線觸媒之不同而異。當中使用鐵、鎳奈米線為觸媒者,所成長之奈米碳管的順向性和石墨層之結晶性均優於使用鈷金屬線者。
由奈米碳管之電漿改質得知,利用氬氣電漿可有效降低碳管之成長密度(6×108 CNTs/cm2),並使蝕刻碳管之頂端變成針狀;然而以氮氣電漿後處理者,由於氮原子會摻雜進入石墨層中,改變碳管表面的鍵結,其於150 W之氮氣電漿改質處理30分鐘後的起始電場由1.5 V/m降至0.7 V/m。
Abstract
Carbon nanotubes (CNTs) arrays were synthesized by inductively coupled plasma chemical vapor deposition (ICP-CVD) combined with anodic alumina oxide (AAO) on Si as nanotemplate. The parameters determining the growth characteristics of CNTs, such as growth temperature, inductive RF power, DC bias, gas ratio, AAO length and pore diameter were investigated. Besides, the factors affecting the field emission properties such as crystallinity of graphite layer and packing density of CNTs were also investigated.
The results show that both plasma intensity and ion flux to the substrate, as controlled by the inductive RF power and DC bias voltage, respectively, can greatly affect the growth of CNTs. The relative importance of the generation of ions and the subsequent transport of ions to the substrate as serial process steps are considered as the two underlying factors in determining the growth characteristics of CNTs. The highest growth rate of CNTs in this study is about 44.6 nm/min, for the growth conditions of inductive RF power -400 V and DC bias 250 W.
CNTs with different packing density were synthesized by ICP-CVD using AAO/Si as a nanotemplate and pre-electroplated Ni nanowires and CH4 were used as catalyst and reaction gas, respectively. The parameters determining the growth density of CNTs arrays, such as AAO pore length, pore diameter, growth time, DC bias, and pretreatment conditions were investigated. It is found that the transport of ion species flux in the AAO channel and the catalytic activity of Ni nanowires determine the growth behavior of CNTs. The field emission measurement shows that CNTs arrays with a medium density of 5×108 CNTs/cm2 grown on the AAO/Si substrate have the lowest turn-on field of 1.5 V/m. Either a decrease or an increase of the CNTs density results in inferior emission properties.
Aligned CNTs fully filled with Fe, Co, and Ni were synthesized by ICP-CVD using nanowires as catalysts. The nanowires were prepared by electroplating using AAO as template. By properly selecting the length of nanowires (420 20 nm), CNTs fully filled with metal catalyst can be directly obtained. The effect of nanowires (Fe, Co, Ni) on the growth of aligned CNTs is also systematically studied. It is found that the catalyst has a strong effect on the nanotube alignment and crystallinity. The CNTs catalyzed by Ni and Fe have a better alignment and a higher degree of graphitization, however, those from Co show a little curled character in the tips and somewhat tangle between CNTs.
The density, morphology and structure of CNTs were modified using plasma treatment. Using Ar plasma for treatment results in the highest etching efficiency comparing to that using the N2 or the H2 plasma. The density is decreased and the tip of CNTs is etched into a needle shape as treated with 150 W Ar plasma for 30min.The incorporation of nitrogen into graphite-like structures would introduce pentagon defects in the hexagon network for CNTs treated by N2 plasma. The turn-on field of CNTs is reduced from 1.5 to 0.7 V/m as treated with 150 W N2 plasma for 30 min. The field emission property is improved after N2 plasma treatment due to the doping of N atom into the carbon network.
參考文獻
1
M. S. Dresselhaus, and G. Dresselhaus, Ph. Avouris (Eds.): Carbon Nanotubes, Topics Appl. Phys. Springer-Verlag Berlin Heidelberg, 2001, 80 (2001) 391.
2
H. W. Kroto, J. R. Heath, S. C. O'Brien, R. F. Curl, and R. E. Smalley, “C60: Buckminsterfullerene” Nature, 318 (1985) 162.
3
S. Iijima, “Helical microtubules of graphitic carbon” Nature, 354 (1991) 56.
4
D. Ugarte, “Curling and closure of graphitic networks under electron-beam irradiation” Nature, 359 (1992) 707.
5
J. Cook, J. Sloan, and M. Green “Carbon nanotube chemistry” Chem. & Industry, 19 (1996) 600.
6
D. S. Bethune, C. H. Klang, M. S. de Vries, G. Gorman, R. Savoy, J. Vazquez, R. Beyers, “Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls,” Nature 363 (1993) 605.
7
A. Thess, R. Lee, P. Nikolaev, H. Dai, P. Petit, J. Robert, C. Xu, Y. H. Lee, S. G. Kim, A. G. Rinzler, D. T. Colbert, G. E. Scuseria, D. Tománek, J. E. Fischer, and R. E. Smalley, “Crystalline Ropes of Metallic Carbon Nanotubes” Science, 273 (1996) 483.
8
H. A. Rinzler, G.; P. Nikolaev; and A. Thess, “Single-wall nanotubes produced by metal-catalyzed disproportionation of carbon monoxide” Chem. Phys. Lett., 260 (1996) 471.
9
H. M.Cheng, F. Li, G. Su, H. Y. Pan, L. L. He, X. Sun, and M. S. Dresselhaus, ”Large-scale and low-cost synthesis of single-walled carbon nanotubes by the catalytic pyrolysis of hydrocarbons” App. Phys. Lett., 72 (1998) 3282.
10
C. Journet and P. Bernier, “Production of carbon nanotubes” Appl. Phys., A 67 (1998) 1.
11
Y. Chen, W. Lin, S. Y. Zhong; J. Johnson, J. David, and R. H. Prince, “Well-aligned graphitic nanofibers synthesized by plasma-assisted chemical vapor deposition” Chem. Phys. Lett., 272 (1997) 178.
12
L. C. Qin, D. Zhou, A. R. Krauss, D. M. Gruen, “Growing carbon nanotubes by microwave plasma-enhanced chemical vapor deposition” Appl. Phys. Lett., 72 (1998) 3437.
13
O. Joubert, “New trends in plasma etching for Ultra Large Scale Integration Technology” Microelectronic Eng., 41/42 (1998) 17.
14
S. M. Rossnagel, “Directional and ionized physical vapor deposition for microelectronics applications” J. Vac. Sci. Technol., B 16 (1998) 2585.
15
J. I. Sohn, S. Lee, Y. H. Song, S. Y. Choi, K. L. Cho, and K. S. Nam, “Patterned selective growth of carbon nanotubes and large field emission from vertically well-aligned carbon nanotube field emitter arrays” Appl. Phys. Lett., 78 (2001) 901.
16
J. Li, C. Papadopoulos, and J. M. Xu, “Highly-ordered carbon nanotube arrays for electronics applications” Appl. Phys. Lett., 75 (1999) 2047.
17
J. S. Suh, and J. S. Lee, “Highly ordered two-dimensional carbon nanotube arrays” Appl. Phys. Lett., 75 (1999) 2047.
18
Z. H. Yuan, H. Hung, H. Y. Dang, J. E. Cao, B. H. Hu, and S. S. Fan, “Field emission property of highly ordered monodispersed carbon nanotube arrays” Appl. Phys. Lett., 78 (2001) 3127.
19
H. Föll, M. Christophersen, J. Carstensen, and G. Hasse, “Formation and application of porous silicon” Mater. Sci. Eng. R, 39 (2002) 93.
20
V. Parkhuitik “Porous Silicon- mechanism of growth and application” Solid State Electronics, 43 (1999) 1121.
21
C. Bower, W. Zhu, S. Jin, and O. Zhou, “Plasma-induced alignment of carbon nanotubes” Appl. Phys. Lett., 77 (2000) 830.
22
X. Ma and E. Wang, “Polymerized carbon nanobells and their field-emission properties” Appl. Phys. Lett., 75 (1999) 2119.
23
H. Dai, “Carbon nanotubes: opportunities and challenges” Surface Sci., 500 (2002) 218.
24
M. S. Dresselhaus, G. Dresselhaus, and P.C. Eklund., “Science of fullerenes and carbon nanotubes” Academic, San Diego, 1996.
25
S. Frank, P. Poncharal, Z. L. Wang, and Walt A. de Heer, “Carbon Nanotube Quantum Resistors” Science, 280 (1998) 1744.
26
蕭宏, “半導體製程技術導論”,(台灣培生教育出版,台北,2001),第七章,pp.221-253.
27
符永豪,“以感應耦合電漿離子蒸鍍法於塑膠與矽基材上成長類鑽碳膜” 國立成功大學資源工程研究所碩士論文,1998, p33.
28
R. T. K. Baker, J. J. Chludzinski, and N. S. Dudash “The formation of filamentous carbon from decomposition of acetylene over vanadium and molybdenum” Carbon, 21 (1983) 463.
29
R. T. K. Baker, M. A. Braber and P. S. Harris, “Nucleation and growth of carbon deposites from the nickel catalyzed decomposition of acetylene” J. Catal., 26 (1972) 51.
30
T. Baird, J. R. Fryer, and B. Grant, “Carbon formation on iron and nickel foils by hydrocarbon pyrolysis-reactions at 700℃” Carbon, 12 (1972) 591.
31
A. Oberlin, M. Endo, and T. Koyana, “High resolution electron microscopy of graphizable carbon fiber prepared by benzene decomposition” J. Crys. Growth, 32 (1976)335.
32
G. G. Tibbetts, “Vapor-grown carbon fibers: Status and prospects” Carbon, 27 (1989) 745.
33
R. T. Baker, “Catalytic growth of carbon filament” Carbon, 27 (1989) 315.
34
J. R. Nielsen, and D. L. Trimm, “Mechanism of carbon formation on nickel containing catalysts” J. Catal., 48 (1977) 155.
35
G. E. Thompson, “Porous anodic alumina: fabrication, characterization and applications” Thin Solid Films, 297 (1997) 192.
36
H. Asoh, K. Nishio, M. Nakao, T. Tamamura, and H. Masuda, “Conditions for Fabrication of Ideally Ordered Anodic Porous Alumina Using Pretextured Al” J. Electro. Chem. Soc., 148 (2001) B152.
37
J. P. O’Sullivan and G. C. Wood, “The morphology and mechanism of formation of porous anodic films on aluminium” Proc. Roy. Soc. Lond. A., 317 (1970) 511.
38
H. Masuda, H. Asoh, M. Watanabe, K. Nishio, M. Nakao, and T. Tamamura, “Square and Triangular Nanohole Array Architectures in Anodic Alumina” Adv. Mater., 13 (2001) 189.
39
S. Fan, M. G. Chapline, N. R. Franklin, T. W. Tombler, A. M. Cassell, and H. Dai, “Self-oriented regular arrays of carbon nanotubes and their field emission properties” Science, 283 (1999) 512.
40
N. Wang, Z. K. Tang, G. D. Li, and J. S. Chen, “Single-walled 4Å carbon nanotube arrays” Nature, 408 (2000) 50.
41
G. Zheng, H. Zhu, Q. Luo, Y. Zhou, and D. Zhao, “ Chemical vapor deposition growth of well-aligned carbon nanotube patterns on cubic mesoporous silica films by soft lithography” Chem. Mater., 13 (2001) 2240.
42
T. Iwasaki, T. Motoi, and T. Den, “Multiwalled carbon nanotubes growth in anodic alumina nanoholes” Appl Phys Lett., 75 (1999) 2044.
43
S. H Jeong, H. Y. Hwang, K. H. Lee, Y. Jeong, “Template-based carbon nanotubes and their applications to a field emitter” Appl. Phys. Lett., 78 (2001) 2052.
44
M. J. Kim, J. H. Choi, J. B. Park, S. K. Kim, J. B. Yoo and C. Y. Park, :Growth characteristics of carbon nanotubes via aluminum nanopore template on Si substrate using PECVD” Thin Solid Films, 435 (2003) 312.
45
T. Yanagishita, M. Sasaki, K. Nishio, and H. Masuda, “Carbon Nanotubes with a Triangular Cross-section, Fabricated Using Anodic Porous Alumina as the Template” Adv. Mater., 16 (2004) 429.
46
W. A. de Heer, A. Châtelain, and D. Ugarte, “A Carbon Nanotube Field Emission Electron Source,” Science 270 (1995) 1179.
47
A. G. Rinzler, J. H. Hafner; P Nikolaev, L. Lou, S. G. Kim, D. Tomanek, P. Nordlander, D. T.Colbert, and R. E. Smalley, “Unraveling nanotubes: field emission from an atomic wire” Science, 269 (1995) 1550.
48
R. H. Fowler, L. W. Nordfeim, “Electron emission in intense electric fields” Proceeding of the Royal Society of London-A 119 (1928) 173.
49
Q. H. Wang, A. A. Setlur, J. M. Lauerhaas, J. Y. Dai, E. W. Seelig, and R. P. H. Chang.” A nanotube-based field-emission flat panel display” Appl. Phys. Lett., 72 (1998) 2912.
50
J. M. Kim, W. B. Choi, N. S. Lee, and J. E. Jung, “Field emission from carbon nanotubes for displays” Diamond & Related Materials, 9 (2000) 1184.
51
J. Appenzeller, R. Martel, and P. Avouris, “Optimized contact configuration for the study of transport phenomena in ropes of single-wall carbon nanotubes” Appl. Phys. Lett., 78 (2001) 3313.
52
P. G. Collins, A. Zettl, and H. Bando, “Nanotube Nanodevice” Science, 278 (1997) 100.
53
S. J. Tans, M. H. Devoret, H. Dai, A. Thess, R. E. Smalley, L. J. Geerligs, and C. Dekker, “Individual single-wall carbon nanotubes as quantum wires” Nature, 386 (1997) 474.
54
Y.-K. Kwon, D. Tománek, and S. Iijima, “Bucky Shuttle" Memory Device: Synthetic Approach and Molecular Dynamics Simulations” Phys. Rev. Lett., 82 (1999) 1470.
55
A. Bachtold, P. Hadley, T. Nakanishi, and C. Dekker, “Logic Circuits with Carbon Nanotube Transistors” Science, 294 (2001) 1317.
56
H. Dai, J. H. Hafner, A. G. Rinzler, D. T. Colbert, and R. E. Smalley “Nanotubes as nanoprobes in scanning probe microscopy” Nature, 384 (1996) 147.
57
S. S. Wong, J. D. Harper, P. T. Lansbury, Jr., and C. M. Lieber “Carbon Nanotube Tips: High-Resolution Probes for Imaging Biological Systems” J. Am. Chem. Soc., 120 (1998) 603.
58
S. S. Wong, A. T. Woolley, E. Joselevich, C. L. Cheung, and C. M. Lieber “Covalently-Functionalized Single-Walled Carbon Nanotube Probe Tips for Chemical Force Microscopy” J. Am. Chem. Soc., 120 (1998) 8557.
59
S. S. Wong, E. Joselevich, A. T. Woolley, C. Li Cheung, and C. M. Lieber “Covalently functionalized nanotubes as nanometre- sized probes in chemistry and biology” Nature, 394 (1998) 52.
60
J. Kong, N. R. Franklin, C. Zhou, M. G. Chapline, S. Peng, K. Cho, and H. Dai “Nanotube Molecular Wires as Chemical Sensors” Science, 287 (2000) 622.
61
Z. F. Ren, Z. P. Huang, J. W. Xu, J. H. Wang, P. Bush, M. P. Siegal, and P. N. Provencio, “Synthesis of large arrays of well-aligned carbon nanotubes on glass” Science, 282 (1998) 1105.
62
M. Okai, T. Muncyoshi, T. Yaguchi, and S. Sasaki, “Structure of carbon nanotubes grown by microwave-plasma-enhanced chemical vapor deposition” Appl. Phys. Leet., 77 (2000) 3468.
63
G. W. Ho, A. T. S. Wee, J. Lin, and W. C. Tiju, “Synthesis of well-aligned multiwalled carbon nanotubes on Ni catalyst using radio frequency plasma-enhanced chemical vapor deposition” Thin Solid Film, 388 (2001) 73.
64
V. I. Merkulov, D. H. Lowndes, Y. Y. Wei, G. Eres, and E. Voelkl, “Patterned growth of individual and multiple vertically aligned carbon nanofibers” Appl. Phys. Lett., 76 (2000) 3555.
65
Z. P. Huang, J. W. Xu, Z. F. Ren, and J. Hwang, “Growth of highly oriented carbon nanotubes by plasma-enhanced hot filament chemical vapor deposition” Appl. Phys. Lett., 73 (1998) 3845.
66
J. H. Han, S. H. Choi, T. Y. Lee, J. B. Yoo, C. Y. Park, H. J. Kim, and I. T. Han, “Effects of growth parameters on the selective area growth of carbon nanotubes” Thin Solid Films, 409 (2002) 126.
67
V. I. Merkulov, D. K. Hensity, A. V. Melechko, M. A. Guillorn, D. H. Lowndes, and M. L. Simposon, “Control Mechanisms for the Growth of Isolated Vertically Aligned Carbon Nanofibers” J. Phys. Chem., B 106 (2002) 10570.
68
P. E. Nolan, D. C. Lynch, and A. H. Cutler, “Carbon Deposition and Hydrocarbon Formation on Group VIII Metal Catalysts” J. Phys. Chem., B 102 (1998) 4165.
69
J. H. Keller, J. C. Forster, and M. S. Barnes, “Planar inductive plasmas for etching” J. Vac. Sic. Technol., A 11 (1993) 2487.
70
D. Herrebout, A. Bogaerts, M. Yan, R. Gijbels, W. Goedheer, and E. Dekempeneer, “One-dimensional fluid model for an rf methane plasma of interest in deposition of diamond-like carbon layers” J. Appl. Phys., 90 (2001) 570.
71
S. Yugo, T. Kanai, T. Kimura, and T. Muto, “Generation of diamond nuclei by electric field in plasma chemical vapor deposition” Appl. Phys. Lett., 58 (1991) 1036.
72
V. I. Merkulov, M. A. Guillorn, D. H. Lowndes, M. L. Simpson, and E. Voelkl, “Shaping carbon nanostructures by controlling the synthesis process” Appl. Phys. Lett., 79 (2001) 1178.
73
A. Vanhulsel, J. P. Celis, E. Dekempeneer, J. Meneve, J. Smeets and K. Vercammen, “ Inductively coupled r.f plasma assisted chemical vapor deposition if diamond-like carbon coating” Diamond & Related Materials, 8 (1999) 1193.
74
J. J. Lander, H. E. Kern, and A. L. Beach, “Solubility and diffusion coefficient of carbon in nickel: reaction rates of nickel-carbon alloy with barium” J. Appl. Phys., 23, 1305 (1952).
75
S. Diamond and C. Wert, “Diffusion of carbon in nickel above and below the Curie temperature” Trans. AIME, 239 (1967) 705.
76
M. P. Siegal, D. L. Overmyer, P. P. Provencio, F. H. Kaatz, and N. J. DiNardo, “Controlling diameter of nanotube films from 5 to 300nm”.Proceedings of the 2001 MRS Fall Meeting, November 26-30, 2001, Boston, MA.
77
F. Turistra, and J. L. Koening, “Raman spectrum of graphite” J. Chem. Phys., 53 (1970) 1126.
78
D. G. Mcculloch, S. Prawer, and A. Hoffman, “Structural investigation of xenon-ion-beam-irradiated glassy carbon” Phys. Rev., B 50 (1994) 5905.
79
O. Noury, T. Stöckli, M. C. Croci, and J. M. Bonard, André, “Growth of carbon nanotubes on cylindrical wires by thermal chemical vapor deposition” Chem. Phys. Lett., 346 (2001) 349.
80
J. M. Bonard, N. Weiss, H. Kind, T. Stöckli, L. Forró, K. Kern, and A. Châtelain “Tuning the Field Emission Properties of Patterned Carbon Nanotube Films” Adv. Mater., 13 (2001) 184.
81
J. H. Choi, T. Y. Lee, S. H. Choi, J. H. Han, J. B. Yoo, C. Y. Park, T. Jung, S. Yu, W. Yi, I. T. Han, and J. M. Kim, ” Density control of carbon nanotubes using NH3 plasma treatment of Ni catalyst layer” Thin Solid Films, 435 (2003) 318.
82
Y. Tu, Z. P. Huang, D. Z. Wang, J. G. Wen, and Z. F. Ren, “Growth of aligned carbon nanotubes with controlled site density” Appl. Phys. Lett., 80 (2002) 4018.
83
S. H. Jeong, O. J. Lee, K. H. Lee, S. H. Oh, and C. G. Park, “Packing Density Control of Aligned Carbon Nanotubes” Chem. Mater., 14 (2002) 4004.
84
T. M. Whitney, J. S. Jiang, P. Seaeson, and C. L. Chien, “Fabrication and magnetic properties of arrays of metallic nanowires”Science, 261 (1993) 1316.
85
M. E. Toimil Molares, V. Buschmann, D. Dobrev, R. Neumann, R. Scholz, and I. U. Schuchert, and J. Vetter, “Single-Crystalline Copper Nanowires Produced by Electrochemical Deposition in Polymeric Ion Track Membranes” Adv. Mater., 13 (2001) 62.
86
J. Luo, Z. P. Huang, Y. G. Zhao, L. Zhang, and J. Zhu, “Arrays of Heterojunctions of Ag Nanowires and Amorphous Carbon Nanotubes” Adv. Mater., 16 (2004) 1512.
87
B. D. Yao, and N. Wang, “Carbon nanotube arrays prepared by MWCVD,” J. Phys. Chem., B 105 (2001) 11395.
88
呂英治,“化學氣相沉積碳化矽鬚晶成長特性之研究”,國立成功大學材料科學及工程學系博士論文,p.91,1999.
89
W. J. Bernard and J. W. Cooke, “The growth of barrier oxide films on aluminum” J. Electrochem. Soc., 106 (1959) 643.
90
P. G. Shewmon,“Diffusion in solids” New York /McGraw-Hill, p.11,1963.
91
J. H. Yen, I. C. Leu, C. C. Lin, and M. H. Hon, “Effect of catalyst pretreatment on the growth of carbon nanotubes” Diamond & Related Mate., 13 (2004) 1237.
92
L. Nilsson, O. Gröning, C. Emmenegger, O. Küttel, E. Schaller, L. Schlapbach, H. Kind, J. M. Bonard and K. Kern, “Scanning field emission from patterned carbon nanotube films” Appl. Phys. Lett., 76 (2000) 2071.
93
J. S. Suh, K. S. Jeong, and J. S. Lee, “Study of the field-screening effect of highly ordered carbon nanotube arrays” Appl. Phys. Lett., 80 (2002) 2392.
94
J. S. Lee and J. S. Suh, “Uniform field emission from aligned carbon nanotubes prepared by CO disproportionation” J. Appl. Phys., 92 (2002) 7519.
95
S. M. Yoon, J. Chae, and J. S. Suh, “Comparison of the field emissions between highly ordered carbon nanotubes with closed and open tips” Appl. Phys. Lett., 84 (2004) 825.
96
N. Grobert, W. K. Hsu, Y. Q. Zhu, J. P. Hare, H. W. Kroto, D. R. M. Walton, M. Terrones, H. Terrones, Ph. Redlich, M. Rűhle, R. Escudero and F. Morales, “Enhanced magnetic coercivities in Fe nanowires” Appl. Phys. Lett., 75 (1999) 3363.
97
Y. Hayashi, T. Tokunaga, Y. Yogaya, S. Toh, K. Kaneko, T. Soga, and T. Hunbi, “Corn-shape carbon nanofibers with dense graphite synthesized by microwave plasma-enhanced chemical vapor deposition” Appl. Phys. Lett., 84 (2004) 2886.
98
S. Toh, K. Kaneko, Y. Hayashi, T. Tokunaga, and W. J. Moon, “Microstructure of metal-filled carbon nanotube” J. Electron Microsc., 53 (2004) 149.
99
E. Dujardin, T. W. Ebbesen, H. Hiura and K. Tanigaki, “Wetting and nanocapillarity of carbon nanotubes” Science, 265 (1994) 1850.
100
S. C. Tsang, Y. K. Chen, P. J. F. Harris, and M. L. H. Green, “A simple chemical method of opening and filling carbon nanotubes” Nature, 372 (1994) 159.
101
C. N. R. Rao, R. Sen, B. C. Satishkumar and A. Govindaraj, “Large aligned-nanotube bundles form ferrocene pyrolysis” Chem. Commun., (1998) 1525.
102
M. Chhowalla, K. B. K. Teo, C. Ducati, N. L. Rupesinghe, G. A. J. Amaratunga, A. C. Ferrari, D. Roy, J. Robertson, and W. I. Milne, “Growth process conditions of vertically aligned carbon nanotubes using plasma enhanced chemical vapor deposition” J. Appl. Phys., 90 (2001) 5308.
103
L. H. Chan, K.H. Hong, S.H. Lai, X.W. Liu, amd H.C. Shih, “The formation and characterization of palladium nanowires in growing carbon nanotubes using microwave plasma-enhanced chemical vapor deposition” Thin Solid Films, 423 (2003) 27.
104
S. Amelinckx, X. B. Zhang, D. Bernaerts, X. F. Zhang, V. Ivanov and J. B. Nagy, “Structure model and growth mechanism for multishell carbon nanotubes” Science, 265 (1994) 635.
105
Z. P. Huang, D. Z. Wang, J. G. Wen, M. Sennertt, H. Gibson and Z. F. Ren, “ Effect of nickel, iron and cobalt on growth of aligned carbon nanotubes” Appl. Phys. A 74 (2002) 387.
106
C. J. Lee, J. Park and J. A. Yu, “Catalyst effect on carbon nanotubes synthesized by thermal chemical vapor deposition” Chem. Phys. Lett., 360 (2002) 250.
107
L. Dong, J. Jiao, C. Pan and D. W. Tuggle, “Effects of catalysts on the internal structures of carbon nanotubes and corresponding electron field-emission properties” Appl. Phys., A 78 (2004) 9.
108
H. Hu, B. Zhao, E. M. Itkis; and R. C. Haddon, “Nitric Acid Purification of Single-Walled Carbon Nanotubes” Journal of Physical Chemistry B, 107 (2003) 13838.
109
K. L. Strong, D. P. Anderson, K. Lafdi and J. N Kuhn, “Purification process for single-wall carbon nanotubes” Carbon, 41 (2003) 1477.
110
D. Chattopadhyay, I. Galeska and F. Papadimitrakopoulos, “Complete elimination of metal catalysts from single wall carbon nanotubes” Carbon, 40 (2002) 985.
111
P. X. Hou, S. Bai, Q. H. Yang, C. Liu and H. M. Cheng, “Multi-step purification of carbon nanotubes” Carbon, 40 (2002) 81.
112
N. Plank, L. Jiang and R. Cheung, “Fluorination of carbon nanotubes in CF4 plasma” Appl. Phys. Lett., 83 (2003) 2426.
113
C. Y. Zhi, X. D. Bai and E. G. Wang, “Enhanced field emission from carbon nanoutbes by hydrogen plasma treatment” Appl. Phys. Lett., 81 (2002) 1690.
114
G. A. M. Reynolds, L. T. Cheng, R. Bouchard, P. Moffett, H. Jones, L. F. Robinson, S. I. Shah, and D. I. Amey, “Electron field emission from Ar+ ion-treated thick film carbon paste” J. Mater. Res., 17 (2002) 2590.
115
K. Yu, Z. Zhu, M. Xu, Q. Li and W. Lu, “Electron field emission from soluble carbon nanotube films treated by hydrogen plasma” Chem. Phys. Lett., 373 (2003) 109.
116
L. H. Chan, K. H. Hong, D. Q. Xiao, W. J. Hsieh, S. H. Lai, and H. C. Shih, “Role of extrinsic atoms on the morphology and field emission properties of carbon nanotubes” Appl. Phys. Lett., 82 (2003) 4334.
117
P. Hammer, R. G. Lacerda, R. Droppa Jr and F. Alvarez, “Comparative study on the bonding structure of hydrogenated and hydrogen free carbon nitride films with high N content” Diamond & Related Mater., 9 (2002) 577.
118
P. Petrov, D. B. Dimitrov, V. Krastev, Ch. Georgiev and C. Popov, “X-ray photoelectron spectroscopy characterization of CNx thin films deposited by electron beam evaporation and nitrogen ion bombardment” Diamond & Related Mater., 9 (2000) 562.
119
K. S. Ahn, J. S. Kim, C. O. Kim and J. P. Hong, “Non-reactive rf treatment of multiwall carbon nanotube with inert argon plasma for enhanced filed emission” Carbon, 41 (2003) 2481.
120
D. N. Davydov, P. A. Sattari, D. Almawlawi, A. Osika, T. L. Haslett, M. Moskovits, “Field emitters based on porous aluminum oxide templates” J. Appl. Phys., 86 (3983) 1999.