| 研究生: |
吳坤憲 Wu, Kun-Hsien |
|---|---|
| 論文名稱: |
結合創成加工與流場計算之離心泵葉片優化設計 The Optimum Design of Centrifugal Pump Impellers Using Generated Machining Method and CFD. |
| 指導教授: |
林博正
Lin, Bor-Jeng 洪振益 Hung, Chen-I |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2002 |
| 畢業學年度: | 90 |
| 語文別: | 中文 |
| 論文頁數: | 107 |
| 中文關鍵詞: | 比速率 、最佳化方法 、類神經網路 、離心泵 、創成加工 、速度三角形 |
| 外文關鍵詞: | neural network, CATIA, turbomachinery, generated machining, velocity triangle, centrifugal pump, specific speed, TASCflow, optimization method |
| 相關次數: | 點閱:117 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
離心泵屬於流體機械的一種為三維複雜扭曲的流道,流體經過扭曲的流道時受到離心力的作用甩出去造成流場不穩定,更因回流與空蝕產生造成能量損失,而使葉輪效率降低。本研究的目的,即針對離心泵的葉片外型作流場分析,了解其物理現象,希望在未來的離心泵葉片設計時能有所貢獻。本文的離心泵係根據泵浦特有的無因次化參數「比速率」決定離心泵的流量、揚程及轉速。其葉片設計以「參數設計法」將葉片幾何參數化,再配合「歐拉理論」與「速度三角形」決定初始葉形的幾何參數值,為了使設計的葉形能夠被五軸加工機切削製造,故以「創成加工」來產生葉形輪廓線點資料,然後以CAD建構葉片的三維外型。初始葉形決定之後再以計算流體力學CFD模擬分析,最後導入最佳化方法試圖找出葉片的最佳化設計。最佳化部份是結合類神經網路與最佳化方法,其優點可以快速地搜尋到高效率的離心式葉片。最後結果指出本文的最佳葉形確實比初始葉形效率提昇百分之三十左右。
Centrifugal pump is one kind of turbomachinery. Because of centrifugal force causing, the flow field inside centrifugal impellers is unstable. Some special phenomena, such as separation and cavitation, have great effect on the loss inside the impellers. The purpose of this research is to analyze the flow field for different centrifugal impellers and to understand the physics in them. It is hoped that we can provide an efficient method for designing centrifugal pump impellers. In this research, the decision of flow rate, head and rotational speed is according to dimensionless “specific speed”. First, we choose 9 parameters of the impeller profiles according to “parametric impeller design method”. Second, we decide the 9 parametric values of the initial impeller profiles according to “Euler theory” and “velocity triangle”. Three, in order to assure the impeller profiles can be manufactured directly by five-axis machine tool, we adopt “generating machining” to establish the control data points of an impeller. The obtained data are used as the input data for CATIA CAD/CAM software to construct the three-dimensional CAD model. Finally, the computational fluid dynamics method (CFD) is then used to analyze the flow performance of the centrifugal impellers; besides, we also try to search the optimized impeller profiles. Increasing the efficiency is the main consideration in this research. A combination of “neural network” with “optimization method” is used to search high efficient centrifugal impellers. The result of this research is that the efficiency of optimized impellers is higher than initial impellers about 30%.
[1]Lewis, R. I., Turbomachinery Performance Analysis, John Wiley & Sons, Inc., New York, 1996.
[2]Demeulenaere, A., Leonard, O., and Van den Braembussche, R., “Application of a Three-Dimensional Inverse Method to the Design of a Centrifugal Compressor Impeller,” Transactions of the ASME Journal of Turbomachinery, Vol. 127, 1998.
[3]Chen, S. L., and Wang, W. T., “Computer Aided Manufacturing Technologies for Centrifugal Compressor Impellers,” Journal of Materials Processing Technology, Vol. 115, Issue. 3, pp. 284-293, 2001.
[4]Al-Zubaidy, S. N., “A Proposed Design Package for Centrifugal Impellers,” Computers & Structures, Vol. 55, No. 2, pp. 347-356, 1995.
[5]Morishige, K., and Takeuchi, Y., “5-Axis Control Rough Cutting of an Impeller with Efficiency and Accuracy,” IEEE Paper Robotics and Automation, Vol. 2, pp. 1241-1246, 1997.
[6]Dawes, W. N., Dhanasekaran, P. C., Kellar, W. P., and Savill, A. M., “Reducing Bottlenecks in the CAD-to-Mesh-to-Solution Cycle Time to Allow CFD to Participate in Design,” Transactions of the ASME Journal of Turbomachinery, Vol. 123, 2001.
[7]Su, S. P., Chen, S. H., Lee, L. C., and Hwang, T. Y., “The Use of CFD in Turbomachinery Applications,” Transactions of the Aeronautical and Astronautical Society of the Republic of China, Vol. 32, No. 1, pp. 1-24, 2000.
[8]Zhang, M. J., Pomfret, M. J., and Wong, C. M., “Three-Dimensional Viscous Flow Simulation in a Backswept Centrifugal Impeller at the Design Point,” Computers & Fluids, Vol. 25, No. 5, pp. 497-507, 1996.
[9]Pak, E. T., and Lee, J. C., “Performance and Pressure Distribution Changes in a Centrifugal Pump Under Two-Phase Flow,” Proceedings of the Institution of Mechanical Engineers-A-Journal of Power and Energy, Vol. 212, pp. 165-171, 1998.
[10]李海鋒,“利用三維紊流數值模擬進行離心葉輪設計比較”,流體機械,第29卷第9期,第18-22頁,2001.
[11]Zurada, J. M., Introduction to Artificial Neural Systems, West Publishing Company, Singapore, 1992.
[12]Cichocki, A., and Unbehauen, R., Neural Networks for Optimization and Signal Processing, John Wiley & Sons, Inc., New York, 1994.
[13]Oh, H. W., and Chung, M. K., “Optimum Values of Design Variables versus Specific Speed for Centrifugal Pumps” Proceedings of the Institution of Mechanical Engineers-A-Journal of Power and Energy, Vol. 213, pp. 219-226, 1999.
[14]Pierret, S., “Turbomachinery Blade Design Using a Navier-Stokes Solver and Artificial Neural Network,” Transactions of the ASME Journal of Turbomachinery, Vol. 121, 1998.
[15]Visser, F. C., Dijkers, R. J. H., and op de Woerd, J. G. H., “Numerical Flow-Field Analysis and Design Optimization of a High-Energy First-Stage Centrifugal Pump Impeller,” Computing and Visualization in Science, Vol. 3, Part. 1-2, pp. 103-108, 2000.
[16]李生丕,”應用類神經網路於軸流風扇葉片設計”,成功大學機械工程研究所碩士論文,1999.
[17]楊建裕,流體機械,高立出版社,第203頁,1991.
[18]陳朝光,王明庸,黃泰翔,機械設計製圖,高立出版社,第380頁,1997.
[19]John, T., Centrifugal Pump Design, John Wiley & Sons, Inc., New York, pp. 66, 2000.
[20]Davidov, Y., “General Idea of Generating Mechanism and it’s Application to Bevel Gear, ” Mechanism and Machine Theory, Vol. 33, pp. 505-515, 1998.
[21]杜黎蓉,林博正,CATIA,全華科技圖書,2001.
[22]Launder, B. E., and Spalding, D. B., “The Numerical Computation of Turbulent Flows,” Computer Methods in Applied Mechanics and Engineering, Vol. 3, pp. 269-289, 1974.
[23]Raithby, G. D., “Skew Upstream Differencing Schemes for Problems Involving Fluid Flow,” Computer Methods in Applied Mechanics and Engineering, Vol. 9, pp. 153-164, 1976.
[24]Huget, R. G., “The Evaluation and Development of Approximation Schemes for the Finite Volume Method,” University of Waterloo, Ph.D. Thesis, 1985.
[25]Schneider, G. E., and Raw, M. J., “Control-Volume Finite Element Method for Heat Transfer and Fluid Flow Using Co-located Variables-1. Computational Procedure,” Numerical Heat Transfer, Vol. 11, pp. 363-390, 1987.
[26]周政宏,神經網路-理論與實務,松崗電腦圖書,1986.
[27]Ham, F. M., Kostanic, I., Principles of Neurocomputing for Science & Engineering, Mcgraw-Hill, New York, 2000.
[28]劉惟信,機械最佳化設計,全華圖書,1996.
[29]徐業良,工程最佳化設計,宏明圖書,1995.
[30]Hertz, J., Krogh, A., and Palmer, R. G., “Introduction to the Theory of Neural Computation,” Addison-Wesley, pp.147, 1991.
[31]黃福居,”全三維軸流風扇的葉片最佳化設計”,成功大學機械工程研究所碩士論文,2001.