| 研究生: |
王士豪 Wang, Shih-Hao |
|---|---|
| 論文名稱: |
應用慣性感測器量測建立輪椅上肢運動模型分析關節負荷 A Study of Upper Limb Propelling Wheelchair Model Based on Trajectory Measurement Using Inertial Sensor |
| 指導教授: |
許來興
Hsu, Lai-Hsing |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2015 |
| 畢業學年度: | 103 |
| 語文別: | 中文 |
| 論文頁數: | 146 |
| 中文關鍵詞: | 輪椅 、關節負荷 、MEMS慣性感測器 、空間機構 、尤拉角 、運動靜力分析 |
| 外文關鍵詞: | Wheelchair, Joint loads, Inertial seneors, Spatial mechanism, Kinetostatics |
| 相關次數: | 點閱:109 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
輪椅為下肢行動不便者主要之行動輔具,輪椅之驅動全依賴上肢動作的施力,因此上肢關節傷害與疼痛為輪椅長期使用者常見之問題,目前市面上雖有電動輪椅可供選擇,但多數使用者因價格因素仍使用一般輪椅,因此分析使用輪椅對上肢的影響非常重要,了解上肢負荷之模式將有助於設計減少關節負荷、省力最佳化之輪椅。
本文嘗試以慣性感測器取代一般常用之光學式動作擷取系統進行研究,首先介紹運動感測器製作、微控制器程式撰寫、感測器校正方法、實驗量測方法,接著進行上臂姿態角量測,記錄驅動輪椅時上臂姿態之尤拉角。並介紹上肢各骨骼與關節,說明各關節自由度、運動範圍,再根據各關節自由度為其選擇相同自由度之機械接頭,建立SRSR多自由度空間機構作為上肢推動輪椅的分析模型,接著為其建立運動坐標系、推導坐標轉換關係與閉合方程式、機構合成方法,並介紹使用MATLAB與LM演算法計算接頭位移之方法,再以上臂姿態角量測資料作為機構模型之位移輸入、合成機構模型,進行上肢推動輪椅之軌跡、位移分析。接下來推導靜力平衡方程式,定義力矩軸向,分析輪椅行進阻力,接著以位移分析之結果進行輪椅行進於無坡度與無障礙坡道之上肢運動靜力分析(Kinetostatics)。
本文建立之SRSR上肢驅動輪椅模型與靜力分析模式,可幫助研究者了解輪椅行進於無坡度路面或無障礙斜坡時上肢負荷、力矩之情形,分析之結果說明坡度對關節的負荷、上肢驅動力矩影響極大。本研究以慣性感測器製作運動感測器取代光學式動作擷取系統之量測,模型之位移分析結果證明其為可行之方法,且具高成本效益,深具發展潛力。
The objectives of this study are to use mechanism analysis and inertial sensor-based motion capture system as an inexpensive alternative solution to optical motion capture system, and provide informations of upper limb joint loads during wheelchair propulsion which would be practical to wheelchair design with lower man power and joint loads.
A measurement system and upper limb/wheelchair spatial mechanism model for analyzing upper limb joint loading during the push phase of manual wheelchair propulsion was developed. The measurement system was based on MEMS inertial sensor. It consisted of one triaxial accelerometer and one triaxial rate gyroscope, and a micro control unit (MCU) for receiving informations from inertial sensing units. The upper limb/wheelchair system is a closed-loop kinematic chain, sensors can be placed on upper arm to obtain kinematic data for calculating attitude angles of upper arm. The measurements from sensor were transmitted to computer through MCU for upper limb joint forces analysis. The upper limb/wheelchair spatial mechanism model in the study is SRSR spatial mechanism, it consisted of four linkages and two ball-and-socket joints and two revolute joints. The mechanism model can analyze joints angular displacement and trajectory using homogeneous coordinate transformation matrices, joint loads, driving moments and resisting moments by kinetostatics analysis.
Experiments were done with a healthy volunteer. The result of angular displacement shows high accurate of measurement system, and the results of kinetostatics analysis indicate that the slope of ground surface has significant effect to the increase in joint loads and moments.
Agrawal, O. P. (1987). Hamilton Operators and Dual-Number-Quaternions in Spatial Kinematics. Mechanism and Machine Theory, 22(6), 569-575.
Agrawal, V. P., & Rao, J. S. (1987). The Mobility Properties of Kinematic Chains. Mechanism and Machine Theory, 22(5), 497-504.
Ananthasuresh, G., & Kramer, S. (1994). Analysis and Optimal Synthesis of the RSCR Spatial Mechanisms. Journal of Mechanical Design, 116(1), 174-181.
Asato, K. T., Cooper, R. A., Robertson, R. N., & SIP, J. (1993). SMARTWheels: Development and Testing of a System for Measuring Manual Wheelchair Propulsion Dynamics. IEEE Transactions on Biomedial Engnieering, 40(12).
Boninger, M. L., Baldwin, M., Cooper, R. A., Koontz, A., & Chan, L. (2000). Manual Wheelchair Pushrim Biomechanics and Axle Position. Archives of Physical Medicine and Rehabilitation, 81(5), 608-613.
Boninger, M. L., Souza, A. L., Cooper, R. A., Fitzgerald, S. G., Koontz, A. M., & Fay, B. T. (2002). Propulsion Patterns and Pushrim Biomechanics in Manual Wheelchair Propulsion. Archives of Physical Medicine and Rehabilitation, 83(5), 718-723.
Bregman, D. J. J., Drongelen, S. v., & Veeger, H. E. J. (2009). Is Effective Force Application in Handrim Wheelchair Propulsion Also Efficient? Clinical Biomechanics, 24(1), 13-19.
Brown, K. M., & Dennis Jr, J. E. (1971). Derivative Free Analogues of the Levenberg-Marquardt and Gauss Algorithms for Nonlinear Least Squares Approximation. Numerische Mathematik, 18(4), 289-297.
Brubaker, C. (1986). Wheelchair Prescription: An Analysis of Factors That Affect Mobility and Performance. Journal of Rehabilitation Research Development, 23(4), 19-26.
Brubaker, C. (1990). Technical Consideration--Ergonometric Considerations. Journal of Rehabilitation Research and Development, 37.
Chéze, L. (2000). Comparison of Different Calculations of Three-Dimensional Joint Kinematics From Video-Based System Data. Journal of Biomechanics, 33(12), 1695-1699.
Carleton University, (2010). Motion Capture. http://mocap.csit.carleton.ca/index.ph
p?Section=ViconBlade&Item=StepByStep&Page=PlaceMarkers.
Clauser, C. E., McConville, J. T., & Young, J. W. (1969). Weight, Volume, and Center of Mass of Segments of the Human Body: DTIC Document.
Coleman, T., Branch, M. A., & Grace, A. (1999). Optimization toolbox.
Collinger, J. L., Boninger, M. L., Koontz, A. M., Price, R., Sisto, S. A., Tolerico, M. L., et al. (2008). Shoulder Biomechanics During the Push Phase of Wheelchair Propulsion: A Multisite Study of Persons With Paraplegia. Archives of Physical Medicine and Rehabilitation, 89(4), 667-676.
Cooper, R. A. (1990). A Systems Approach to the Modeling of Racing Wheelchair Propulsion. Journal of Rehabilitation Research and Development, 27(2), 151-162.
Corke, P. (1996). A Robotics Toolbox for MATLAB. Robotics & Automation Magazine, IEEE, 3(1), 24-32.
Curtis, H. (2009). Orbital Mechanics for Engineering Students(3rd ed.), New York: Elsevier.
Curtis, K. A., Tyner, T. M., Zachary, L., Lentell, G., Brink, D., Didyk, T., Gean, K., Hall, J., Hooper, M., Klos, J., Lesina, S., Pacillas, B. (1999). Effect of a Standard Exercise Protocol on Shoulder Pain in Long-Term Wheelchair Users. Spinal Cord, 37(6), 421-429.
Curtis, K. A., and Black, K. (1999). Shoulder Pain in Female Wheelchair Basketball Players. Journal of Orthopaedic and Sports Physical Therapy, 29(4), 225-231.
Curtis, K. A., Drysdale, G. A., Lanza, R. D., Kolber, M., Vitolo, R. S., and West, R. (1999). Shoulder Pain in Wheelchair Users with Tetraplegia and Paraplegia. Archives of Physical Medicine and Rehabilitation, 80(4), 453-457.
Dalyan, M., Cardenas, D. D., and Gerard, B. (1999). Upper Extramity Pain after Spinal Cord Injury. Spnial Cord, 37(3), 191-195.
Dejnabadi, H., Jolles, B. M., & Aminian, K. (2005). A New Approach to Accurate Measurement of Uniaxial Joint Angles Based on A Combination of Accelerometers and Gyroscopes. IEEE Transactions on Biomedical Engineering, 52(8), 1478-1484.
Denavit, J., Hartenberg, R. S., Razi, R., & Uicker, J. J. J. (1965). Velocity, Acceleration, and Static-Force Analyses of Spatial Linkages. Journal of Applied Mechanics, 32(4), 903-910.
Desroches, G., Dumas, R., Pradon, D., Vaslin, P., Lepoutre, F.-X., & Chèze, L. (2010). Upper Limb Joint Dynamics During Manual Wheelchair Propulsion. Clinical Biomechanics, 25(4), 299-306.
Dubowsky, S. R., Rasmussen, J., Sisto, S. A., & Langrana, N. A. (2008). Validation of A Musculoskeletal Model of Wheelchair Propulsion and Its Application to Minimizing Shoulder Joint Forces. Journal of Biomechanics, 41(14), 2981-2988.
Duffy, J., & Gilmartin, M. (1978). Displacement Analysis of the Generalised RSSR Mechanism. Mechanism and Machine Theory, 13(5), 533-541.
Garner, B. A., & Pandy, M. G. (1999). A Kinematic Model of the Upper Limb Based on the Visible Human Project (VHP) Image Dataset. Computer Methods in Biomechanics and Biomedical Engineering, 2(2), 107-124.
Gellman, H., Sie, I.,and Waters, R. L. (1988). Late Complications of the Weight-Bearing Upper Extremity in the Paraplegic Patient. Clinical Orthopaedics and Related Research, 233, 132-135.
Gellman, H., Chandler, D. R., Petrasek, J., Sie, I., Adkins, R., and Waters, R. L. (1988). Carpal Tunnel Syndrome in Paraplegic Patients. Journal of Bone and Joint Surgery, 70(4), 517-519.
Gil-Agudo, A., Del Ama-Espinosa, A., Pérez-Rizo, E., Pérez-Nombela, S., & Pablo Rodríguez-Rodríguez, L. (2010). Upper Limb Joint Kinetics During Manual Wheelchair Propulsion in Patients with Different Levels of Spinal Cord Injury. Journal of Biomechanics, 43(13), 2508-2515.
Gogu, G. (2005). Chebychev–Grübler–Kutzbach's Criterion for Mobility Calculation of Multi-Loop Mechanisms Revisited via Theory of Linear Transformations. European Journal of Mechanics-A/Solids, 24(3), 427-441.
Gosselin, C., & Angeles, J. (1990). Singularity Analysis of Closed-Loop Kinematic Chains. IEEE Transactions on Robotics and Automation, 6(3), 281-290.
Gragg, J., & Yang, J. (2013). Digital Human Forward Kinematic and Dynamic Reliabilities. Journal of Mechanical Design, 135(7), 071008.
Groves, P. D. (2008). Principles of GNSS, Inertial, and Multisensor Integrated Navigation Systems(1st ed.), Norwood: Artech House Publishers.
Guo, L.-Y., Su, F.-C., & An, K.-N. (2006). Effect of Handrim Diameter on Manual Wheelchair Propulsion: Mechanical Energy and Power Flow Analysis. Clinical Biomechanics, 21(2), 107-115.
Gupta, K., & Tinubu, S. (1983). Synthesis of Bimodal Function Generating Mechanisms without Branch Defect. Journal of Mechanical Design, 105(4), 641-647.
Hedrick, J. K., & Yip, P. P. (2000). Multiple Sliding Surface Control: Theory and Application. Journal of Dynamic Systems, Measurement, and Control, 122(4), 586-593.
Hibbeler, R. (2007). Engineering Mechanics: Statics(11th ed.), New Jersey: Prentice Hall Publishers.
Hofstad, M., & Patterson, P. E. (1994). Modelling the Propulsion Characteristic of A Standard Wheelchair. Journal of Rehabilitation Research and Development, 31, 129-129.
InvenSense, (2013). MPU-6000 and MPU-6050 Product Specification Revision 3.4.
Jaycon Systems, (2015). http://www.jayconsystems.com/.
Jekeli, C. (2001). Inertial Navigation Systems with Geodetic Applications(1st ed.), Berlin: Walter de Gruyter.
Jiménez, J., Alvarez, G., Cardenal, J., & Cuadrado, J. (1997). A Simple and General Method for Kinematic Synthesis of Spatial Mechanisms. Mechanism and Machine Theory, 32(3), 323-341.
Johnston, E. R. (2010). Vector Mechanics for Engineers: Dynamics(11th ed.), New York: McGraw-Hill.
Kenneth Levenberg (1944). A Method for the Solution of Certain Non-Linear Problems in Least Squares. Quarterly of Applied Mathematics 2: 164–168.
Kiss, R. M., Kocsis, L., & Knoll, Z. (2004). Joint Kinematics and Spatial–Temporal Parameters of Gait Measured by An Ultrasound-Based System. Medical Engineering & Physics, 26(7), 611-620.
Klopčar, N., Lenarčič, J. (2005). Kinematic Model for Determination of Human Arm Reachable Workspace. Meccanica, 40(2), 203-219.
Kraige, L., Meriam, J. (2007). Engineering Mechanics: Dynamics(6th ed.), New York: John Wiley.
Kulig, K., Newsam, C. J., Mulroy, S. J., Rao, S., Gronley, J. K., Bontrager, E. L., et al. (2001). The Effect of Level of Spinal Cord Injury on Shoulder Joint Kinetics During Manual Wheelchair Propulsion. Clinical Biomechanics, 16(9), 744-751.
Lin, C.-J., Lin, P.-C., Guo, L.-Y., & Su, F.-C. (2011). Prediction of Applied Forces in Handrim Wheelchair Propulsion. Journal of Biomechanics, 44(3), 455-460.
Mayagoitia, R. E., Nene, A. V., & Veltink, P. H. (2002). Accelerometer and Rate Gyroscope Measurement of Kinematics: An Inexpensive Alternative to Optical Motion Analysis Systems. Journal of Biomechanics, 35(4), 537-542.
McCarthy, J. M. (1986). Dual Orthogonal Matrices in Manipulator Kinematics. The International Journal of Robotics Research, 5(2), 45-51.
Mercer, J. L., Boninger, M., Koontz, A., Ren, D., Dyson-Hudson, T., & Cooper, R. (2006). Shoulder Joint Kinetics and Pathology in Manual Wheelchair Users. Clinical Biomechanics, 21(8), 781-789.
Meier, R. (2015). Roger Meier's Freeware, http://freeware.the-meiers.org/.
Miller, N. R., Shapiro, R., & McLaughlin, T. M. (1980). A Technique for Obtaining Spatial Kinematic Parameters of Segments of Biomechanical Systems from Cinematographic Data. Journal of Biomechanics, 13(7), 535-547.
NaturalPoint, (2015). https://www.naturalpoint.com/.
Nichols, P. J. R., Norman, P. A., and Ennis, J. R. (1979). Wheelchair User’s Shoulder? Shoulder Pain in Patients with Spinal Cord Lesions, Scandinavian Journal of Rehabilitation Medicine. 11(1), 29-32.
Norton, R. L. (2011). Kinematics and Dynamics of Machinery(2nd ed.), New York: McGraw-Hill.
Pansiot, J., Zhang, Z., Lo, B., Yang, G.-Z., Zhang, Z., Pansiot, J., et al. (2008). WISDOM: Wheelchair Inertial Sensors for Displacement and Orientation Monitoring. Measurement Science and Technology, 366, 251-260.
Pentland, W. E., and Twomey, L. T. (1991). The Weight-Bearing Upper Extremity in Women with Long Term Paraplegia. Paraplegia ,11(1), 521-530.
Pentland, W. E., and Twomey, L. T. (1994). Upper Limb Function in Persons with Long Term Paraplegia and Implications for Independence: Part I, Paraplegia, 32(4), 211-218.
Perez, A., McCarthy, J. M. (2004). Dual Quaternion Synthesis of Constrained Robotic Systems. Journal of Mechanical Design, 126(3), 425-435.
PhaseSpase, (2015). http://www.phasespace.com/.
Qu, H., Fang, D., Xie, H. (2008). A Monolithic CMOS-MEMS 3-Axis Accelerometer With a Low-Noise, Low-Power Dual-Chopper Amplifier. IEEE Sensors Journal, 9(8), 1511-1518.
Rahnejat, H. (1998). Multi-Body Dynamics: Vehicles, Machines and Mechanisms(1st ed.), Bury St Edmunds: Professional Engineering Publishing Limited.
Rao, S. S. (2009). Engineering Optimization: Theory and Practice(4th ed.), New Jersey: John Wiley & Sons.
Rodgers, M. M., Tummarakota, S., & Lieh, J. (1998). Three-Dimensional Dynamic Analysis of Wheelchair Propulsion. Journal of Applied Biomechanics, 14(1), 80.
Roetenberg, D., Luinge, H., Slycke, P. (2013). Xsens MVN: Full 6DOF Human Motion Tracking Using Miniature Inertial Sensors.
Rowberg, J. (2015). I2Cdevlib, http://www.i2cdevlib.com/.
Rozendaal, L. A., & Veeger, D. (2000). Force Direction in Manual Wheel Chair Propulsion: Balance Between Effect and Cost. Clinical Biomechanics, 15, Supplement 1(0), S39-S41.
Rozendaal, L. A., Veeger, H. E. J., & van der Woude, L. H. V. (2003). The Push Force Pattern in Manual Wheelchair Propulsion as a Balance Between Cost an Effect. Journal of Biomechanics, 36(2), 239-247.
Santos, V. J., & Valero-Cuevas, F. J. (2006). Reported Anatomical Variability Naturally Leads to Multimodal Distributions of Denavit-Hartenberg Parameters for the Human Thumb. IEEE Transactions on Biomedical Engineering, 53(2), 155-163.
Sasaki, M., Kimura, T., Matsuo, K., Obinata, G., Iwami, T., Miyawaki, K., et al. (2008). Simulator for Optimal Wheelchair Design. Journal of Robotics and Mechatronics, 20(6), 854.
Sauret, C., Bascou, J., De Saint Remy, N., Pillet, H., Vaslin, P., & Lavaste, F. (2012). Assessment of Field Rolling Resistance of Manual Wheelchairs. Journal of Rehabilitation Research and Development, 49(1), 63-74.
Schnorenberg, A. J., Slavensa B. A., Wang M., Vogeld L. C., Smith P. A., Harris G. F., (2014), Biomechanical Model for Evaluation of Pediatric Upper Extremity Joint Dynamics During Wheelchair Mobility. Journal of Biomechanics, 47(1), 269-276.
Šenk, M., & Chèze, L. (2006). Rotation Sequence as an Important Factor in Shoulder Kinematics. Clinical Biomechanics, 21, Supplement 1(0), S3-S8.
Shah, S. V., Saha, S. K., & Dutt, J. K. (2012). Denavit-Hartenberg Parameterization of Euler Angles. Journal of Computational and Nonlinear Dynamics, 7(2), 021006-021006.
Sheth, P. N., & Uicker, J. J. (1971). A Generalized Symbolic Notation for Mechanisms. Journal of Manufacturing Science and Engineering, 93(1), 102-112.
Shimada, S. D., Robertson, R. N., Bonninger, M. L., & Cooper, R. A. (1998). Kinematic Characterization of Wheelchair Propulsion. Journal of Rehabilitation Research and Development, 35(2), 210-218.
Sie, I. H., Waters R. L., Adkins, R., and Gellman, H. (1992). Upper Extremity Pain in the Postrehabilitation Spinal Cord Injured Patient. Archives of Physical Medicine and Rehabilitation, 73(1), 44-48.
Silaghi, M.-C., Plänkers, R., Boulic, R., Fua, P., & Thalmann, D. (1998). Modelling and Motion Capture Techniques for Virtual Environments, Geneva: Springer.
Stephen F. Austin State University, (2015). American Sign Language Media Development Laboratory. http://www.sfasu.edu/humanservices/147.asp.
Sun, C.-M., Tsai, M.-H., Liu, Y.-C., Fang, W. (2010). Implementation of a Monolithic Single Proof-Mass Tri-Axis Accelerometer Using CMOS-MEMS Technique. IEEE Transactions on Electron Devices, 57(7), 1670-1679.
Tamura, T. (2014). Chapter 2.2 - Wearable Inertial Sensors and Their Applications (In Sazonov, E., Neuman, M. R. (Eds.), Wearable Sensors , 85-104.), Oxford: Academic Press.
Tinubu, S., & Gupta, K. (1984). Optimal Synthesis of Function Generators without the Branch Defect. Journal of Mechanical Design, 106(3), 348-354.
Tong, K., & Granat, M. H. (1999). A Practical Gait Analysis System Using Gyroscopes. Medical Engineering & Physics, 21(2), 87-94.
Uicker, J., Denavit, J., & Hartenberg, R. (1964). An Iterative Method for the Displacement Analysis of Spatial Mechanisms. Journal of Applied Mechanics, 31(2), 309-314.
Van der Woude, L., Veeger, D., Rozendal, R., Van Ingen Schenau, G., Rooth, F., & Van Nierop, P. (1988). Wheelchair Racing. Medicine and Science in Sports Exercise, 20, 492-500.
Veeger, H. E. J., Rozendaal, L. A., & Van der Helm, F. C. T. (2002). Load on the Shoulder in Low Intensity Wheelchair Propulsion. Clinical Biomechanics, 17(3), 211-218.
Westerhoff, P., Graichen, F., Bender, A., Halder, A., Beier, A., Rohlmann, A., et al. (2009). In Vivo Measurement of Shoulder Joint Loads During Activities of Daily Living. Journal of Biomechanics, 42(12), 1840-1849.
Westerhoff, P., Graichen, F., Bender, A., Halder, A., Beier, A., Rohlmann, A., et al. (2011). Measurement of Shoulder Joint Loads During Wheelchair Propulsion Measured in Vivo. Clinical Biomechanics, 26(10), 982-989.
Williams, S., Schmidt, R., Disselhorst-Klug, C., & Rau, G. (2006). An Upper Body Model for the Kinematical Analysis of the Joint Chain of the Human Arm. Journal of Biomechanics, 39(13), 2419-2429.
Wu, G., Van der Helm, F. C. T., Veeger, H. E. J., Makhsous, M., Van Roy, P., Anglin, C., et al. (2005). ISB Recommendation on Definitions of Joint Coordinate Systems of Various Joints for the Reporting of Human Joint Motion—Part II: Shoulder, Elbow, Wrist and Hand. Journal of Biomechanics, 38(5), 981-992.
Yuan, M. S. (1971). Displacement Analysis of the RCRCR Five-Link Spatial Mechanism. Journal of Mechanisms, 6(1), 119-134.
Zukowski, L. A., Roper, J. A., Shechtman, O., Otzel, D. M., Bouwkamp, J., & Tillman, M. D. (2014). Comparison of Metabolic Cost, Performance, and Efficiency of Propulsion Using an Ergonomic Hand Drive Mechanism and a Conventional Manual Wheelchair. Archives of Physical Medicine and Rehabilitation, 95(3), 546-551.
內政部建築研究所(2014),無障礙設施規範:第二章 無障礙通路,http://free.abri.gov.tw/law.php?id=127。
內政部統計處(2011),內政部統計通報-100年第35週:100年6月底領有身心障礙手冊者人數統計,http://sowf.moi.gov.tw/stat/week/list.htm。
內政部統計處(2012),內政部統計通報-101年第34週:101年上半年身心障礙者福利統計,http://sowf.moi.gov.tw/stat/week/list.htm。
江傳江(2002),「輪椅推進期間後輪輪軸位置對肩關節三維運動學之影響:於肩關節夾擠症候之臨床應用」,國立陽明大學物理治療研究所碩士論文。
江迦拿(2005),「降低相對不舒適度、關節負荷及驅動扭矩之輪椅尺寸最佳設
計」,國立成功大學機械工程研究所碩士論文。
沈柏宇(2010),「一SSCP-S肩部肌肉骨骼模型及其於手臂外展動作之運動及肌力分析的應用」,國立成功大學機械工程研究所碩士論文。
沈志忠 審校、張聖明 譯(2006),「MATLAB程式設計與應用」,台北:全華科技圖書股份有限公司。(譯自Chapman, S. J., (2005). MATLAB Programming for Engineers (3rd ed.), Nelson:Thomson Learning.)
李開偉(2003),「實用人因工程學」,台北:全華科技圖書股份有限公司。
李玉龍(1990),「人體工學概論」,台北:六合出版社。
吳庭岳(2011),「使用S-SUCr-U肌肉骨骼模型於上肢驅動輪椅與一復健機械手之肌力分析的研究」,國立成功大學機械工程研究所碩士論文。
徐玉珍(2003),「輪椅設計系統之研發」,國立台北科技大學機電整合研究所。
秦崇閔(2012),「一SSCP-SUU上肢肌肉骨骼模型及其於上肢驅動輪椅與一復健機械手之肌力分析的應用」,國立成功大學機械工程研究所碩士論文。
許樹淵(1976),「人體運動力學」,台北:六合出版社。
陳宜成(2010),「使用SUU為基礎之模型於上肢驅動輪椅及復健機械手之運動及靜力分析」,國立成功大學機械工程研究所碩士論文。
郭藍遠(2003),「推力最佳化輪椅研究」,國立成功大學醫學工程研究所博士文。
黃昱傑(2010),「利用卡曼濾波器整合全球定位系統及慣性量測單元之精簡模型研究」,國立交通大學機械工程研究所碩士論文。
馮丁樹(2007),「機動學」,台北:全華科技圖書股份有限公司。
游許銓(2001),「電動輪椅動力驅動之解析模型」,國立成功大學醫學工程研究所碩士論文。
廖崇欽(2013),「使用SSCP-S-SUCr-U骨骼肌肉模型模擬上肢驅動輪椅與上肢帶動復健機械手的研究」,國立成功大學機械工程研究所碩士論文。
劉惟信(1996),「機械最佳化設計」,台北:全華科技圖書股份有限公司。
劉豪哲(2011),「一S-SUCr-U上肢骨骼模型及其於上肢驅動輪椅與復健機械手的運動與負荷分析」,國立成功大學機械工程研究所碩士論文。
鄭博文(2010),「一SUU上肢骨骼模型及其於驅動輪椅與一復健機械手之肌力分析的應用」,國立成功大學機械工程研究所碩士論文。
鄭麗菁、鐘敦輝、陳建行、賴昆城(2008),「GRAY’S醫用解剖學」,台北:合記圖書出版社。(譯自Drake, R. L. , Vogl, A. W., Mitchell A. W. M. (2004). Gray’s Anatomy for students(1st ed.), Edinburgh: Churchill Livingstone.)
校內:2025-07-23公開