簡易檢索 / 詳目顯示

研究生: 曾柏凱
Tseng, Po-Kai
論文名稱: 奈米流體於波形渠道熱傳增強之數值最佳化
Numerical Optimization of Heat Transfer Enhancement in a Wavy Channel using Nanofluids
指導教授: 楊玉姿
Yang, Yue-Tzu
賴新一
Lai, Hsin-Yi
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 103
中文關鍵詞: 奈米流體單相模型兩相模型波形渠道計算流體力學最佳化基因演算法
外文關鍵詞: nanofluids, single-phase model, two-phase model, wavy channel, CFD, optimum, genetic algorithm method
相關次數: 點閱:155下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以多目標函數並結合全因子實驗設計方法,藉由基因演算法及計算流體力學設計奈米流體(銅/水、氧化鋁/水以及氧化銅/水)於二維波形渠道的問題。應用控制體積法求解穩態、耦合二維橢圓偏微分方程式,奈米流體的層流強制對流。
    影響奈米流體熱傳增益的重要參數為:雷諾數、奈米粒子體積濃度、波形之振幅與波形之個數。首先以單相模型所得的數值結果與參考文獻的可用數據作確認,最大誤差在8%內,接著再進一步延伸應用至兩相模型(two-phase model)。
    數值模擬結果顯示,體積濃度為φ= 3%與φ= 5%的銅/水奈米流體(100 nm)相較於純水分別有15%、24%的熱增益。平均紐賽數隨著奈米粒子體積濃度 與雷諾數Re的增加而提高。而就氧化鋁/水、銅/水及氧化銅/水三種奈米流體而言,銅/水奈米流體的熱傳增益優於氧化鋁/水及氧化銅/水。另一方面,由奈米流體之摩擦阻抗的結果顯示,幾何外型對於摩擦阻抗的影響較奈米粒子體積濃度的影響來得顯著。而後發現兩相模型在溫度場上與單相模型有很大的差異,但流場方面和單相模型所得到曲線幾乎重合。
    此外,在數值驗證後,並利用全因子實驗設計方法(full factorial experimental design)和基因演算法 (genetic algorithm method)得到目標函數熱性能係數E (thermal performance factor) 與三個設計參數波形振幅、波形之個數、奈米粒子體積濃度 之間的關係式。

    In this study, the multi-parameter constrained optimization procedure integrating the design of experiments (DOE), full factorial experimental design (FFED), genetic algorithm (GA) and computational fluid dynamics (CFD) is proposed to design two-dimensional wavy channel with nanofluids (Cu/water, /water and CuO/water). The elliptical, coupled, steady-state, two-dimensional governing partial differential equations for laminar forced convection of nanofluids are solved numerically using the finite volume approach.
    Some important parameters for the influences of heat transfer enhancement such as Reynolds number, the particle volume concentration, the wavy channel amplitude and the wavy numbers on the enhancement of nanofluid(100 nm) heat transfer have been investigated. The numerical results with single-phase model are first validated with the available data in the literature, the maximum discrepancy within 8%, and then further extend to two phase model.
    The numerical results indicates that the thermal enhancement can achieve 15%、24% in the wavy channel flow compared with pure fluid, with the particle volume concentrationφ= 3% and φ= 5% of Cu/water nanofluids. The averaged Nusselt number increases with the increase of the particle concentration and Reynolds number. Among the mixtures studied, the Cu/water nanofluid appears to offer a better heat transfer enhancement than Al2O3/water and CuO/water. On the other hand, the friction factor of the nanofluids is also discussed, and it seems that the friction factor mainly depends on the amplitude of the wavy wall rather than the nanoparticle volume concentration. Furthermore, two-phase model predict almost identical hydrodynamic fields but different thermal ones.
    In addition, after the validation of the numerical results, the numerical optimization of this problem is also presented by using full factorial experimental design and genetic algorithm (GA) method. The objective function E which is defined as Thermal Performance Factor has developed a correlation function with three design parameters, wave amplitude, wavy numbers and the particle volume concentration.

    中文摘要……………………………………………………………………I 英文摘要…………………………………………………………………III 致謝…………………………………………………………………………V 目錄…………………………………………………………………………VI 表目錄……………………………………………………………………IX 圖目錄………………………………………………………………………X 符號說明…………………………………………………………………XIV 第一章 緒論………………………………………………………………1 1-1 文獻回顧…………………………………………………………3 1-2本文探討的主題及方法…………………………………………8 1-3本文架構…………………………………………………………8 第二章 理論分析…………………………………………………………9 2-1 奈米流體理論分析………………………………………………9 2-1-1等效密度、比熱………………………………………9 2-1-2等效熱傳導係數………………………………………10 2-1-3等效黏滯係數…………………………………………12 2-2 混合模型………………………………………………………12 2-2-1混合模型之連續方程式………………………………13 2-2-2混合模型之動量方程式………………………………14 2-2-3濃度方程式………………………………15 2-2-4相對速度…………………………………16 2-3空間流場解析…………………………………………………17 2-4邊界條件………………………………………………………19 2-5數據計算………………………………………………………20 第三章 數值方法…………………………………………………………23 3-1概述……………………………………………………………23 3-2統御方程式的座標轉換………………………………………24 3-3格點位置的配置………………………………………………26 3-4統御方程式的離散……………………………………………27 3-5壓力修正方程式………………………………………………29 3-6差分方程式的解法……………………………………………31 3-7收斂條件………………………………………………………32 第四章 最佳化設計……………………………………………………35 4-1概述……………………………………………………………35 4-2全因子法………………………………………………………36 4-3迴歸分析………………………………………………………36 4-4基因演算法……………………………………………………38 4-4-1適應度…………………………………………………39 4-4-2基因演算法算子………………………………………40 4-4-3終止條件………………………………………………44 第五章 結果與討論……………………………………………………49 5-1波形渠道之數值模擬…………………………………………49 5-1-1網格獨立測試…………………………………………50 5-1-2溫度場特性分析………………………………………51 5-1-3流場特性分析…………………………………………54 5-2全因子法與基因演算法之最佳化……………………………56 第六章 結論與建議……………………………………………………97 6-1結論……………………………………………………………97 6-2建議…………………………………………………………99 參考文獻………………………………………………………………100

    [1] Maxwell, J. C., Electricity and Magnetism, 1st Ed., Clarendon Press, Oxford, England, 1873.
    [2] Ahmed, M. A., Shuaib, N. H., M.Z. Yusoff, “Numerical investigations on the heat transfer enhancement in a wavy channel using nanofluid,” International Journal of Heat and Mass Transfer , Vol. 55, pp. 5891-5898, 2012.
    [3] Akbari, M., Galanis, N., Behzadmehr, A., “Comparative analysis of single and two-phase models for CFD studies of nanofluid heat transfer,” International Journal of Thermal Sciences, Vol. 50, pp.1343-1354, 2011.
    [4] Choi, S.U.S., “Enhancing thermal conductivity of fluids with nanoparticles developments and applications of non-Newtonian flows,” ASME FED Vol.231/MD66, pp. 99-105, 1995.
    [5] Eastman, J.A., Choi, U.S., Li, S., Thompson, L.J., Lee, S., “Enhanced thermal conductivity through the development of nanofluids,” Materials Research Society Symposium-Proceedings, Vol.457, pp. 3-11, 1997.
    [6] Lee, S., Choi, S.U.S., Li, S., Eastman, J.A, “Measuring thermal conductivity of fluids containing oxide nanoparticles,” Journal of Heat Transfer, Vol.121, pp. 280-289, 1999.
    [7] Wen, D., Ding, Y., “Experimental investigation into convective heat transfer of nanofluids at the entrance region under laminar flow conditions, ” International Journal of Heat and Mass Transfer, Vol.47, pp. 51-81, 2004 .
    [8] Santra, A.K., Sen, S., Chakraborty, N, “Study of heat transfer due to laminar flow of copper-water nanofluid through two isothermally heated parallel plates,” International Journal of Thermal Sciences, Vol. 48, pp. 391-400, 2009.
    [9] Keblinski, P., Phillpot, S.R., Choi, S.U.S, Eastman, J.A., ”Mechanisms of heat flow in suspensions of nano-sized particles(nanofluid),” International Journal of Heat Mass Transfer, Vol.45, pp. 855-863, 2002.
    [10] Mostafa, K. M. , Ardehali, R. M., “CFD modeling (comparing single and two-phase approaches) on thermal performance of Al2O3/water nanofluid in mini-channel heat sink,” International Communications in Heat and Mass Transfer, Vol. 44, pp. 157-164, 2013.
    [11] Einstein, A. Investigation on the theory of Brownian movement, Dover, New York, 1956.
    [12] Brinkman, H.C., “The viscosity of concentrated suspensions and solutions,” J. Chem. Phys, Vol. 20, pp. 571-581, 1952.
    [13] Hrishikesh E. Patel, T. Sundararajan, T. Pradeep, A. Dasgupta, N. Dasgupta , Sarit K. Das, “A micro-convection model for thermal conductivity of nanofluids,” Journal of physics, Vol. 65, pp. 863-869, 2005.
    [14] Ishii, M., Mishima, K., “Two-fluid dynamic theory of two-phase flow,” Paris: Eyrolles, 1975.
    [15] Manninen, M., Taivassalo, V., Kallio, S., “On the mixture model for multiphase flow,” VTT Publications 288. Technical Research Center of Finland., 1996.
    [16] Schiller, L., Naumann, A., “A drag coefficient correlation,” Z.Ver. Deutsch. Ing. Vol. 77, pp. 318-320, 1935.
    [17] Miller, A., Gidaspow, D., “Dense,vertical gas- solid flow in a pipe,” AIChE J.,Vol.38, pp. 1801-1815, 1992.
    [18] Thompson, J.F., Thames, F.C., Mastin, C.W., “Automatic numerical generation of body-fitted curvilinear coordinate system for field containing any number of arbitrary two-dimensional bodies,” Journal of Computational Physics, Vol. 15, pp. 299-319, 1974.
    [19] Thomas, P.D., “Composite Three-dimensional grids generated by elliptic system,” AIAA Journal, Vol. 20, pp. 1195-1202, 1982.
    [20] Yang, C.H., Computational fluid dynamics study of lower urinary tract system based on medical imaging technology, Master Thesis, National Tsing Hua University, Taiwan, 2002.
    [21] Wu, B.X. , Gebremedhin, K.G., “Numerical simulation flow field around a cow using 3-D body-fitted coordinate system,” Journal of Thermal Biology, Vol. 26, pp. 563-573, 2001.
    [22] Patankar, S.V., Numerical Heat Transfer and Fluid Flow, McGraw-Hill, New York, 1980.
    [23] Versteeg, H.K., Malalasekera, W., An Introduction to Computational Fluid Dynamics-The Finite Volume Method, Longman, London, 1995.
    [24] Tannehill, J.C., Anderson, D.A., Pletcher, R.H., Computational Fluid Mechanics and Heat Transfer, Taylor & Francis, Levittown, 1997.
    [25] Ferziger, J.H., Peric, M., Computational Methods for Fluid Flow, Springer Verlag, New York, 2002.
    [26] Chung, T.J., Computational Fluid Dynamics, Cambridge University Press, Cambridge, UK, 2002.
    [27] Bagley, J.D., “The Behavior of Adaptive System which Employ Genetic and Correlation Algorithm,” Dissertation Abstracts International,” Vol. 28, 1967.
    [28] De Jong, K.A., “An Analysis of the Behavior of a Class of Genetic Adaptive Systems,” PhD Dissertation, University of Michigan, No. 76~9381, 1975.
    [29] Goldberg, D.E., “Genetic Algorithms in Search, Optimization and Machine Learning,” Addison-Wesley, 1989.
    [30] Davis, L.D., “Handbook of Genetic Algorithms,” Van Nostrand Reinhold, 1991.
    [31] Koza, J.R., “Genetic Programming, on the Programming of Computers by Means of Natural Selection, MIT Press, 1992.
    [32] Putra, N., Roetzel, W., Das, S.K. , “ Natural convection of nanofluids,” Heat Mass Transfer 39, 775-784, 2003.

    下載圖示 校內:2015-07-25公開
    校外:2016-07-25公開
    QR CODE