簡易檢索 / 詳目顯示

研究生: 洪子軒
Hung, Tzu-Hsuan
論文名稱: 光固化深共熔凝膠摻雜全無機鈣鈦礦材料的開發與特性分析
Development and Characterization of Photocurable Deep Eutectic Solvent Gel Doped with All-Inorganic Perovskite Materials.
指導教授: 周昱薰
Chou, Yu-Hsun
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Photonics
論文出版年: 2024
畢業學年度: 113
語文別: 中文
論文頁數: 112
中文關鍵詞: 鈣鈦礦奈米結晶高分子凝膠光固化複合材料
外文關鍵詞: Perovskite Nanocrystals, Polymer Gel, Photocuring, Composite Material
相關次數: 點閱:32下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 由於鈣鈦礦材料具有優異的光學性質與簡易製備的優勢,因此現今被廣泛應用於光學元件的研究,然而鈣鈦礦極容易受到空氣中的水氧值影響,產生降解,因此封裝的重要性也由此體現。
    本研究以薄荷醇 (menthol) 和1-十四醇 (1-tetradecanol) 配製深共熔溶劑 (Deep Eutectic Solvent ,DES),並利用此疏水性溶劑作為鈣鈦礦前驅溶液的反溶劑,探討鈣鈦礦在該溶劑中的結晶尺寸與形貌。隨後,在深共熔溶液系統中加入丙烯酸 (Acrylic Acid ,AA) 和丁酸 (Butyric Acid ,BA) 作為複合材料的聚合單體,並添加二苯基-(2,4,6-三甲基苯甲酰)氧磷 (TPO) 作為光起始劑 (photoinitiator),以及聚乙二醇甲醚甲基丙烯酸酯 (PEGMA) 作為交聯劑,開發出一款可以用一鍋法製備的光固化深共熔凝膠漿料,並將鈣鈦礦奈米結晶摻雜於其中。
    藉由配方調整,可調控凝膠之機械性質實現超過 700 % 的形變量,同時不影響材料之光學性質。將鈣鈦礦材料封裝於深共熔凝膠中,使材料具備鈣鈦礦優異的光學性質,還可在大氣中進行長期保存。在 25 °C、濕度 30 % ~ 40 % 的環境下,該材料可穩定保存超過 30 天,仍能達到 77.8 % 的光致發光強度。此外,該複合材料可應用於光固化 3D 列印技術,進一步拓展其多樣化應用。

    Due to the excellent optical properties and ease of fabrication, perovskite materials have become widely studied for optical devices. However, perovskites are highly susceptible to degradation caused by moisture and oxygen in the air, highlighting the importance of encapsulation.
    In this study, menthol and 1-tetradecanol were used to formulate a deep eutectic solvent (DES), which served as an anti-solvent for the perovskite precursor solution. The crystallite size and morphology of the perovskite in this solvent were investigated. Subsequently, acrylic acid (AA) and butyric acid (BA) were introduced as monomers for composite material polymerization in the DES system, with diphenyl(2,4,6-trimethylbenzoyl)phosphine oxide (TPO) used as the photoinitiator, and poly(ethylene glycol) methyl ether methacrylate (PEGMA) as the cross-linker. A one-pot photocurable deep eutectic solvent-based gel paste was developed, into which perovskite nanocrystals were doped.
    By adjusting the formulation, the mechanical properties of the gel were tuned to achieve a strain capacity exceeding 700 % without compromising its optical properties. Encapsulating the perovskite within the DES gel allowed the material to retain the perovskite's outstanding optical properties and maintain long-term stability in ambient conditions. At 25°C and 30 % - 40 % humidity, the material remained stable for over 30 days, retaining 77.8 % of its photoluminescence intensity. Furthermore, this composite material is suitable for photocurable 3D printing technology, expanding its potential applications.

    中文摘要 I Abstract III 誌謝 X 目錄 XII 表目錄 XVI 圖目錄 XVII 第一章 緒論 1 1-1.前言 1 1-2.研究動機與目的 2 第二章 理論基礎 3 2-1.光固化深共熔凝膠配方概述 3 2-1.1高分子單體 (Monomer) 3 2-1.2深共熔溶劑 (Deep Eutectic Solvent) 5 2-1.3光起始劑 (Photoinitiator) 8 2-1.4交連劑 (Crosslinker) 10 2-1.5添加劑 (Additive) 10 2-2.凝膠的介紹 10 2-2.1凝膠的分類 11 2-2.2深共熔凝膠的介紹 14 2-2.3深共熔凝膠的應用 15 第三章 文獻回顧 18 3-1.鈣鈦礦簡介 18 3-1.1鈣鈦礦結構 18 3-1.2鈣鈦礦奈米結晶製備方法 20 3-1.3鈣鈦礦降解機制 24 3-1.4應力對鈣鈦礦能隙影響 28 3-1.5鈣鈦礦應用 31 3-1.6高分子-鈣鈦礦複合材料 32 3-2.3D列印技術簡介 35 3-2.13D列印技術種類 36 3-2.2材料擠製成型:DIW、FDM 36 3-2.3光固化成型:SLA、DLP、LCD 38 3-2.4顆粒燒結法:SLS、EBM 42 3-2.5分層製造法:LOM 43 第四章 實驗方法與步驟 45 4-1.實驗設計與流程 45 4-2.鈣鈦礦粉末之製備 46 4-3.單體與鈣鈦礦奈米結晶相容性測試 47 4-4.深共熔溶劑配製 47 4-5.鈣鈦礦奈米結晶產率分析 48 4-6.光固化樹脂之配製 49 4-7.凝膠配方比例測試 49 4-8.儀器設備與藥品 50 4-8.1傅立葉轉換紅外光譜儀 (FTIR) 50 4-8.2紫外光-可見光光譜儀 (Ultraviolet-Visible Spectrophotometer) 52 4-8.3萬能拉伸試驗機 (Universal Testing Machine, UTM) 53 4-8.4X光繞射儀 (X-ray diffractometer, XRD) 54 4-8.5掃描式電子顯微鏡 (Scanning Electron Microscope, SEM) 56 4-8.6光致發光光譜 (Photoluminescence Spectroscopy) 57 4-9.實驗儀器與藥品列表 58 第五章 實驗結果與討論 60 5-1.材料配方之測試結果 60 5-1.1單體與鈣鈦礦奈米結晶化學穩定性測試結果 60 5-1.2單體初步聚合測試 61 5-1.3深共熔溶劑測試結果 62 5-1.4DES與單體比例對凝膠化之分析 64 5-1.5反溶劑比例對鈣鈦礦結晶產率的分析 66 5-2.材料之特性分析 67 5-2.1鈣鈦礦奈米結晶分析 67 5-2.2FTIR分析 70 5-2.3曝光時間對吸收譜之響應 71 5-2.4穿透率量測 72 5-2.5機械性質測試 73 5-2.6鈣鈦礦於凝膠中之均勻性測試 74 5-2.7應變對PL之響應 75 5-2.8穩定性測試 77 第六章 結論與未來展望 80 6-1.結論 80 6-2.未來與展望 81 參考文獻 82

    [1] Emma L Smith, Andrew P Abbott, and Karl S Ryder. Deep eutectic solvents (dess) and their applications. Chemical Reviews, 114(21):11060-11082, 2014.
    [2] Madhur Babu Singh Mr, Vaishnu S Kumar Mr, Mansi Chaudhary, and Prashant Singh. A mini review on synthesis, properties and applications of deep eutectic solvents. Journal of the Indian Chemical Society, 98(11):100210, 2021.
    [3] Yaguang Zhao, Shuailin Zhang, Zhengiang Wu, Xu Liu, Xianyuan Zhao, Chi-How Peng, and Xuefeng Fu. Visible-light-induced living radical polymerization (Irp) mediated by (salen) co (ii)/tpo at ambient temperature. Macromolecules, 48(15):5132-5139, 2015.
    [4] JG Leprince, Mohammed Hadis, AC Shortall, JL Ferracane, Jacques Devaux, Gagtane Leloup, and WM Palin. Photoinitiator type and applicability of exposure reciprocity law in filled and unfilled photoactive resins. Dental Materials, 27(2):157-164, 2011.
    [5] Haja Tar, Duygu Sevinc Esen, Meral Aydin, Christian Ley, Nergis Arsu, and Xavier Allonas. Panchromatic type ii photoinitiator for free radical polymerization based on thioxanthone derivative. Macromolecules, 46(9):3266-3272, 2013.
    [6] Patricia C Marr and Andrew C Marr. Ionic liquid gel materials: applications in green and sustainable chemistry. Green Chemistry, 18(1):105-128, 2016.
    [7] Justyna Plotka-Wasylka, Miguel De la Guardia, Vasil Andruch, and Mdria Vilkova. Deep eutectic solvents vs ionic liquids: Similarities and differences. Microchemical Journal, 159:105539, 2020.
    [8] Liliana C Tomé and David Mecerreyes. Emerging ionic soft materials based on deep eutectic solvents. The Journal of Physical Chemistry B, 124(39):8465-8478, 2020.
    [9] Christopher J Bartel, Christopher Sutton, Bryan R Goldsmith, Runhai Ouyang, Charles B Musgrave, Luca M Ghiringhelli, and Matthias Scheffler. New tolerance factor to predict the stability of perovskite oxides and halides. Science advances, 5(2):eaav0693, 2019.
    [10] Javad Shamsi, Alexander S Urban, Muhammad Imran, Luca De Trizio, and Liberato Manna. Metal halide perovskite nanocrystals: synthesis, post-synthesis modifications, and their optical properties. Chemical Reviews, 119(5):3296-3348, 2019.
    [11] Loredana Protesescu, Sergii Yakunin, Olga Nazarenko, Dmitry N Dirin, and Maksym V Kovalenko. Low-cost synthesis of highly luminescent colloidal lead halide perovskite nanocrystals by wet ball milling. ACS Applied Nano Materials, 1(3):1300-1308, 2018.
    [12] Amalie Dualeh, Peng Gao, Sang Il Seok, Mohammad Khaja Nazeeruddin, and Michael Gratzel. Thermal behavior of methylammonium lead-trihalide perovskite photovoltaic light harvesters. Chemistry of Materials, 26(21):6160-6164, 2014.
    [13] Bert Conings, Jeroen Drijkoningen, Nicolas Gauquelin, Aslihan Babayigit, Jan D’Haen, Lien D’Olieslaeger, Anitha Ethirajan, Jo Verbeeck, Jean Manca, Edoardo Mosconi, et al. Intrinsic thermal instability of methylammonium lead trihalide perovskite. Advanced Energy Materials, 5(15):1500477, 2015.
    [14] Aurélien MA Leguy, Yinghong Hu, Mariano Campoy-Quiles, M Isabel Alonso, Oliver J Weber, Pooya Azarhoosh, Mark Van Schilfgaarde, Mark T Weller, Thomas Bein, Jenny Nelson, et al. Reversible hydration of ch3nh3pbi3 in films, single crystals, and solar cells. Chemistry of Materials, 27(9):3397-3407, 2015.
    [15] Qing Sun, Paul Fassl, David Becker-Koch, Alexandra Bausch, Boris Rivkin, Sai Bai, Paul E Hopkinson, Henry J Snaith, and Yana Vaynzof. Role of microstructure in oxygen induced photodegradation of methylammonium lead triiodide perovskite films. Advanced Energy Materials, 7(20):1700977, 2017.
    [16] Yixin Ouyang, Yajuan Li, Pengchen Zhu, Qiang Li, Yuan Gao, Jianyu Tong, Li Shi, Qionghua Zhou, Chongyi Ling, Qian Chen, et al. Photo-oxidative degradation of methylammonium lead iodide perovskite: mechanism and protection. Journal of Materials Chemistry A, 7(5):2275-2282, 2019.
    [17] Jinpeng Wu, Shun-Chang Liu, Zongbao Li, Shuo Wang, Ding-Jiang Xue, Yuan Lin, and Jin-Song Hu. Strain in perovskite solar cells: origins, impacts and regulation. National Science Review, 8(8):nwab047, 2021.
    [18] Cheng Zhu, Xiuxiu Niu, Yuhao Fu, Nengxu Li, Chen Hu, Yihua Chen, Xin He, Guangren Na, Pengfei Liu, Huachao Zai, et al. Strain engineering in perovskite solar cells and its impacts on carrier dynamics. Nature Communications, 10(1):815, 2019.
    [19] Angew Chem Int Ed. 61, September 2022. First published: 19 September 2022.
    [20] Loredana Protesescu, Sergii Yakunin, Maryna I Bodnarchuk, Franziska Krieg, Riccarda Caputo, Christopher H Hendon, Ruo Xi Yang, Aron Walsh, and Maksym V Kovalenko. Nanocrystals of cesium lead halide perovskites (cspbx3, x= cl, br, and i): novel optoelectronic materials showing bright emission with wide color gamut. Nano Letters, 15(6):3692-3696, 2015.
    [21] Yun Tang, Ben Liu, Hudie Yuan, Yalou Xin, Xiaohu Ren, Qiang Chen, and Hongfeng Yin. In situ synthesis of mapbx3 perovskite quantum dot-polycaprolactone composites for fluorescent 3d printing filament. Journal of Alloys and Compounds, 916:164961, 2022.
    [22] Yucheng Zhang, Yusen Zhao, Dong Wu, Jingjing Xue, Yu Qiu, Michael Liao, Qibing Pei, Mark S Goorsky, and Ximin He. Homogeneous freestanding luminescent perovskite organogel with superior water stability. Advanced Materials, 31(37):1902928, 2019.
    [23] Dourong Wang, Jingjing Cui, Yang Feng, Yunlong Guo, Jie Zhang, Yaqi Bao, Haoran Deng, Ruigian Chen, Xinxin Kang, Biao Zhang, et al. A universal approach toward intrinsically flexible all-inorganic perovskite-gel composites with full-color luminescence. Research, 7:0412, 2024.
    [24] MASR Saadi, Alianna Maguire, Neethu T Pottackal, Md Shajedul Hoque Thakur, Maruf Md Ikram, A John Hart, Pulickel M Ajayan, and Muhammad M Rahman. Direct ink writing: a 3d printing technology for diverse materials. Advanced Materials, 34(28):2108855, 2022.
    [25] Valentina Mazzanti, Lorenzo Malagutti, and Francesco Mollica. Fdm 3d printing of polymers containing natural fillers: A review of their mechanical properties. Polymers, 11(7):1094, 2019.
    [26] Omar Ahmed Mohamed. Analytical modeling and experimental investigation of product quality and mechanical properties in fdm additive manufacturing. Swinburne University of Technology, 2017.
    [27] Kai-li Wu, Xiang Li, Zhong-xing Xu, and Chang-jun Liu. 3d printed gas distributor for enhanced production of caco3 via bubbling carbonation. ACS Omega, 8(2):2398-2405, 2023.
    [28] Helena Salgado, Ana TPC Gomes, Ana S Duarte, José MF Ferreira, Carlos Fernandes, Maria Helena Figueiral, and Pedro Mesquita. Antimicrobial activity of a 3d-printed polymethylmethacrylate dental resin enhanced with graphene. Biomedicines, 10(10):2607, 2022.
    [29] M. Launhardt, A. Worz, A. Loderer, T. Laumer, D. Drummer, T. Hausotte, and M. Schmidt Detecting surface roughness on sls parts with various measuring techniques. Polymer Testing, 53:217-226, 2016.
    [30] Necati Ugak, Adem Cicek, and Kubilay Aslantas. Machinability of 3d printed metallic materials fabricated by selective laser melting and electron beam melting: A review. Journal of Manufacturing Processes, 80:414-457, 2022.
    [31] Y. Y. Chiu and H. Hou. Automatic fabrication for bridged laminate object manufacturing (lom) process. Journal of Materials Processing Technology, 140(1-3):179-184, 2003.
    [32] Bahar Faramarzi, Martina Moggio, Nadia Diano, Marianna Portaccio, and Maria Lepore. A brief review of ft-ir spectroscopy studies of sphingolipids in human cells. Biophysica, 3(1):158-180, 2023.
    [33] JASCO. Uv-vis光譜儀的原理與儀器, 2024.
    [34] Salisu Nasir, Mohd Zobir Hussein, Zulkarnain Zainal, Nor Azah Yusof, Syazwan Afif Mohd Zobir, and Ibrahim Mustapha Alibe. Potential valorization of by-product materials from oil palm: A review of alternative and sustainable carbon sources for carbon-based nanomaterials synthesis. BioResources, 14(1), 2019.
    [35] Emil. The applications of epma and sem, 2024. Accessed: 2024-09-27.
    [36] CBea Murray, David J Norris, and Moungi G Bawendi. Synthesis and characterization of nearly monodisperse cde (e= sulfur, selenium, tellurium) semiconductor nanocrystallites. Journal of the American Chemical Society, 115(19):8706-8715, 1993.
    [37] Xiaoming Li, Ye Wu, Shengli Zhang, Bo Cai, Yu Gu, Jizhong Song, and Haibo Zeng. Cspbx3 quantum dots for lighting and displays: room-temperature synthesis, photoluminescence superiorities, underlying origins and white light-emitting diodes. Advanced Functional Materials, 26(15):2435-2445, 2016.
    [38] Sudipta Seth and Anunay Samanta. A facile methodology for engineering the morphology of cspbx3 perovskite nanocrystals under ambient condition. Scientific reports, 6(1):37693, 2016.
    [39] Guohui Li, Kegiang Chen, Yanxia Cui, Yupeng Zhang, Yue Tian, Bining Tian, Yuying Hao, Yucheng Wu, and Han Zhang. Stability of perovskite light sources: status and challenges. Advanced Optical Materials, 8(6):1902012, 2020.
    [40] Sean P Dunfield, Lyle Bliss, Fei Zhang, Joseph M Luther, Kai Zhu, Maikel FAM van Hest, Matthew O Reese, and Joseph J Berry. From defects to degradation: a mechanistic understanding of degradation in perovskite solar cell devices and modules. Advanced Energy Materials, 10(26):1904054, 2020.
    [41] Jingjing Zhao, Yehao Deng, Haotong Wei, Xiaopeng Zheng, Zhenhua Yu, Yuchuan Shao, Jeffrey E Shield, and Jinsong Huang. Strained hybrid perovskite thin films and their impact on the intrinsic stability of perovskite solar cells. Science advances, 3(11):eaa05616, 2017.
    [42] Hui-Seon Kim, Chang-Ryul Lee, Jeong-Hyeok Im, Ki-Beom Lee, Thomas Moehl, Arianna Marchioro, Soo-Jin Moon, Robin Humphry-Baker, Jun-Ho Yum, Jacques E Moser, et al. Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Scientific reports, 2(1):591, 2012.
    [43] Samuel D Stranks, Giles E Eperon, Giulia Grancini, Christopher Menelaou, Marcelo JP Alcocer, Tomas Leijtens, Laura M Herz, Annamaria Petrozza, and Henry J Snaith. Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science, 342(6156):341-344, 2013.
    [44] Guichuan Xing, Nripan Mathews, Shuangyong Sun, Swee Sien Lim, Yeng Ming Lam, Michael Gritzel, Subodh Mhaisalkar, and Tze Chien Sum. Long-range balanced electron-and hole-transport lengths in organic-inorganic ch3nh3pbi3. Science, 342(6156):344-347, 2013.
    [45] Longyu Li, Qianming Lin, Miao Tang, Andrew JE Duncan, and Chenfeng Ke. Advanced polymer designs for direct-ink-write 3d printing. Chemistry-A European Journal, 25(46):10768-10781, 2019.
    [46] Ruben Bayu Kristiawan, Fitrian Imaduddin, Dody Ariawan, Ubaidillah, and Zainal Arifin. A review on the fused deposition modeling (fdm) 3d printing: Filament processing, materials, and printing parameters. Open Engineering, 11(1):639-649, 2021.
    [47] Sachini Wickramasinghe, Truong Do, and Phuong Tran. Fdm-based 3d printing of polymer and associated composite: A review on mechanical properties, defects and treatments. Polymers, 12(7):1529, 2020.
    [48] Erin M Maines, Mayuri K Porwal, Christopher J Ellison, and Theresa M Reineke. Sustainable advances in sla/dlp 3d printing materials and processes. Green Chemistry, 23(18):6863-6897, 2021.
    [49] Haoyuan Quan, Ting Zhang, Hang Xu, Shen Luo, Jun Nie, and Xiaoqun Zhu. Photocuring 3d printing technique and its challenges. Bioactive materials, 5(1):110-115, 2020.
    [50] Ioannis A Tsolakis, William Papaioannou, Erofili Papadopoulou, Maria Dalampira, and Apostolos I Tsolakis. Comparison in terms of accuracy between dlp and lcd printing technology for dental model printing. Dentistry journal, 10(10):181, 2022.
    [51] Thomas Duda and L Venkat Raghavan. 3d metal printing technology. IFAC-PapersOnLine, 49(29):103-110, 2016.
    [52] Prashanth Konda Gokuldoss, Sri Kolla, and Jurgen Eckert. Additive manufacturing processes: Selective laser melting, electron beam melting and binder jetting—selection guidelines. Materials, 10(6):672, 2017.
    [53] Fabrizio Fina, Alvaro Goyanes, Simon Gaisford, and Abdul W Basit. Selective laser sintering (sls) 3d printing of medicines. International journal of pharmaceutics, 529(1-2):285-293, 2017.
    [54] Atheer Awad, Fabrizio Fina, Alvaro Goyanes, Simon Gaisford, and Abdul W Basit. 3d printing: Principles and pharmaceutical applications of selective laser sintering. International Journal of Pharmaceutics, 586:119594, 2020.
    [55] Bernhard Mueller and Detlef Kochan. Laminated object manufacturing for rapid tooling and patternmaking in foundry industry. Computers in Industry, 39(1):47-53, 1999.
    [56] Yuting Cai, Peijuan Zhang, Wenhao Bai, Lu Lu, Le Wang, Xi Chen, and Rong-Jun Xie. Synthesizing bright cspbbr3 perovskite nanocrystals with high purification yields and their composites with in situ-polymerized styrene for light-emitting diode applications. ACS Sustainable Chemistry & Engineering, 10(22):7385-7393, 2022.
    [57] Heng Lu, Xiaohong Tan, Guobin Huang, Shaoru Wu, Yanmei Zhou, Junying Zhang, Qiaowen Zheng, Tianju Chen, Feiming Li, Zhixiong Cai, et al. Green synthesis of highly stable cspbbr3 perovskite nanocrystals using natural deep eutectic solvents as solvents and surface ligands. Nanoscale, 14(46):17222-17229, 2022.

    無法下載圖示 校內:2029-10-04公開
    校外:2029-10-04公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE