簡易檢索 / 詳目顯示

研究生: 蔡旻謙
Tsai, Min-Chien
論文名稱: 利用介電泳力於微/奈米粒子自組裝之研究
Self–Assembly of Micro/Nano Particles by using Dielectrophoretic Force
指導教授: 呂宗行
Leu, Tzong-Shyng
學位類別: 碩士
Master
系所名稱: 工學院 - 微機電系統工程研究所
Institute of Micro-Electro-Mechancial-System Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 91
中文關鍵詞: 介電泳自組裝晶片介電泳力微/奈米粒子
外文關鍵詞: Micro/nano particle, Dielectrophoretic self-assembly chip, Dielectrophoretic force
相關次數: 點閱:72下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究係利用介電泳力於流體中驅動微/奈米粒子做組裝,並建立電極設計及製作能量。在實驗中,選用25μm及10μm大小的乳膠粒子組裝圖形,利用介電泳力在不同電壓頻率之下來驅動乳膠粒子作組裝,並用CCD拍攝圖片觀察乳膠粒子的組裝情況。在電極的設計方面,利用微機電製程技術,選用黃金當電極及導線。介電泳自組裝晶片經由氧氣電漿做表面親水性改質處理之後,使用聚二甲基矽氧烷(PDMS)定義其粒子組裝區域之分界。在實驗中,以四種不同形式之電極做觀測。對於平形式電極而言,200μm及500μm之自組裝區域,其驅動訊號為1.125MHz、20 V、1.125MHz、250 V時,有排列現象發生。四項式電極於400μm × 400μm之空間組裝乳膠粒子。經幾次實驗觀察得知其乳膠粒子於1.125 MHz、6.75 V排列最為均勻及緊密。六項式電極於100μm × 100μm之空間組裝乳膠粒子。其乳膠粒子於1.125 MHz、4V排列最為均勻及緊密。其實驗結果將以CCD圖片報告並呈現出來,可提供日後於微結構組裝一參考之方針。

    This paper describes a method for self-assembly of micro/nano particle by using dielectrophoretic force. In this paper of parameters, including voltage and frequency of driving signal are studied to optimize the performance of the particle assembly. 25μm and 10μm diameter latex particles are chosen in this study. CCD camera is used to record image sequence.Electrodes are fabricated by using Micro Electro Mechanical System technology being particle assembly. Before bonding of polydimethylsiloxane (PDMS) film. O2 plasma is used to treat dielectrophoretic self-assembly chip surfaces, which cause the surface becoming hydrophilic. The experimental results show that the latex particle are assembled in 200μm and 500μm assembly region with driving signal V = 20(V)、f = 1.125 (MHz)、V = 250(V) and f = 1.125 (MHz). Quadrupole electrodes are excited with alternating voltages, and latex particle are assembled in the 400μm × 400μm assembly region, which is defined by PDMS film. Finally, a driving signal with voltage of V = 6.75(V) and frequency of f = 1.125 (MHz) are found to be optimize condition for the latex particle assembly. Hexapole electrodes are excited with a driving signal with voltage of V = 6.75(V) and frequency of f = 1.125 (MHz), and latex particle are assembled in the 100μm × 100μm assembly region.The experimental results under this driving signal, the latex particles can self-assembly into a organized structure which can provide beneficial guide for self-assembly of micro particle into form.

    目 錄 中文摘要……………………………………………………………………I 英文摘要……………………………………………………………………II 誌謝…………………………………………………………………………III 目錄…………………………………………………………………………Ⅳ 表目錄………………………………………………………………………Ⅶ 圖目錄………………………………………………………………………Ⅷ 第一章 緒論 ………………………………………………………………1 1-1 前言……………………………………………………………………1 1-2 自組裝簡介及應用……………………………………………………2 1-3 多孔隙材料之應用……………………………………………………4 1-4 研究動機………………………………………………………………5 1-5 文獻回顧………………………………………………………………6 1-5-1 介電泳之種類與應用……………………………………… 6 1-5-2 微結構形成之方式………………………………………… 9 第二章 實驗原理…………………………………………………………13 2-1 電壓極化之介電泳力原理………………………………………… 13 2-2非均勻電場之介電泳力原理…………………………………………15 2-3電偶相吸之原理………………………………………………………16 2-4六極電偶相吸之原理…………………………………………………17 2-5電壓訊號影響因素……………………………………………………17 第三章 自組裝晶片電極設計與模擬……………………………………25 3-1 自組裝晶片設計…………………………………………………… 25 3-1-1 平行式自組裝晶片之設計………………………………… 26 3-1-2 四項式自組裝晶片之設計………………………………… 28 3-1-3 六項式自組裝晶片之設計………………………………… 28 3-2 數值模擬與理論分析……………………………………………… 29 3-2-1 流體之質量守恆…………………………………………… 30 3-2-2 流體之動量守恆…………………………………………… 30 3-2-3 電場之模式………………………………………………… 31 3-2-4 介電泳力之模式…………………………………………… 31 3-3 初步分析…………………………………………………………… 33 3-4 實驗設備…………………………………………………………… 36 3-5 輸入信號控制系統………………………………………………… 37 3-6 微/奈米粒子種類………………………………………………… 38 3-7實驗方法…………………………………………………………… 38 第四章 材料與製程方法……………………………………………… 56 4-1 簡介………………………………………………………………… 56 4-2 介電泳晶片製程簡介……………………………………………… 56 4-2-1晶片清潔…………………………………………………… 57 4-2-2 微影製程……………………………………………………58 4-2-3 金屬層沉積…………………………………………………59 4-2-4 金屬濕式蝕刻技術…………………………………………60 4-2-5 介電層之旋佈………………………………………………61 4-2-6 自組裝區域之定義…………………………………………62 第五章 實驗結果與討論…………………………………………………69 5-1 實驗結果…………………………………………………………… 69 5-2 實驗討論…………………………………………………………… 70 5-2-1 平行式自組裝晶片之粒子自組裝…………………………70 5-2-2 四項式自組裝晶片之粒子自組裝…………………………71 5-2-1 六項式自組裝晶片之粒子自組裝…………………………72 第六章 結果與討論………………………………………………………85 參考文獻………………………………………………………………… 87 表 目 錄 表1-1多孔隙結構形成方式總表…………………………………………10 表3-1粒子與水溶液性質表………………………………………………39 表3-2乳膠粒子之性質表…………………………………………………39 表4-1 AZ4620光阻旋佈之參數………………………………………… 63 表4-2金屬蒸鍍速率參數表………………………………………………63 表4-3 Su8-5光阻旋佈參數表……………………………………………63 表4-4 PDMS旋佈參數表………………………………………………… 63 圖 目 錄 圖1-1粒子受重力沈澱法示意圖…………………………………………10 圖1-2表面張力法產生自我組裝之示意圖………………………………11 圖1-3離心力排列法示意圖………………………………………………12 圖2-1受非均勻電場之正介電泳力方向判別示意圖……………………19 圖2-2微/奈米粒子受非均勻電場行進示意圖………………………… 20 圖2-3電偶相吸原理示意圖………………………………………………20 圖2-4六極電極電場分佈圖………………………………………………21 圖2-5微/奈米粒子於六項式自組裝晶片動作示意圖………………… 23 圖2-6六極電極電場分佈圖………………………………………………24 圖3-1平行式自組裝晶片之示意圖………………………………………40 圖3-2四項式自組裝晶片之示意圖………………………………………41 圖3-3六項式自組裝晶片之示意圖………………………………………42 圖3-4平行式自組裝晶片光罩設計圖……………………………………44 圖3-5四項式自組裝晶片光罩圖…………………………………………45 圖3-6六極介電泳晶片光罩設計圖………………………………………46 圖3-7邊界絛件示意圖……………………………………………………47 圖3-8粒子受電場驅動模擬圖……………………………………………47 圖3-9輸入訊號與位置關係圖……………………………………………48 圖3-10電場強度與位置關係圖………………………………………… 48 圖3-11六項三角形電極之模擬幾何尺寸圖…………………………… 49 圖3-12六項半圓形電極之模擬幾何尺寸圖…………………………… 49 圖3-13六項三角形自組裝晶片於自組裝區域與電場強度關係圖…… 50 圖3-14六項半圓形自組裝晶片於自組裝區域與電場強度關係圖…… 50 圖3-15自組裝區域與電場強度平方之關係圖………………………… 51 圖3-16三角形電極不同電壓之下其電場強度關係圖………………… 51 圖3-17半圓形電極不同電壓之下其電場強度關係圖………………… 52 圖3-18實驗設備示意圖與裝置照片…………………………………… 53 圖3-19實驗所使用之訊號產生器……………………………………… 54 圖3-20實驗所使用之示波器…………………………………………… 54 圖3-21實驗所使用之高壓放大器……………………………………… 55 圖4-1 介電泳晶片製作流程…………………………………………… 64 圖4-2電子束原理示意圖…………………………………………………66 圖4-3共用實驗室電子束蒸鍍機外貌圖…………………………………66 圖4-4四項式自組裝晶片實體圖…………………………………………67 圖4-5平行式自組裝晶片A完成圖……………………………………… 67 圖4-6平行式自組裝晶片B完成圖……………………………………… 68 圖4-7六項式自組裝晶片晶片完成圖……………………………………68 圖5-1 500μm之平行式自組裝晶片粒子組裝圖…………………………76 圖5-2 200μm之平行式自組裝晶片粒子組裝圖…………………………77 圖5-3四項式自組裝晶片於五倍物鏡下觀測之自組裝圖………………78 圖5-4四項式自組裝晶片於十倍物鏡下觀測之自組裝圖………………79 圖5-5直徑為10μm粒子於四項式自組裝晶片之自組裝圖……79 圖5-6 25μm微粒子於六項式自組裝晶片排列圖……… 80 圖5-7 10μm微粒子於六項式自組裝晶片排列圖……… 83 圖5-8電子顯微鏡觀測圖…………………………………84 圖5-9 EDS材料分析圖……………………………………84

    1. http://eande.lbl.gov/ECS/Aerogels/sahist.htm.

    2. J.-A. Paik, B. Dunn, N. Kitazawa, S.-K. Fan, C.-J. Kim, M. C. Wu, “Preparation of Mesoporous Oxides for MEMS Structure,” 2000 MRS (Materials Research Society) Fall Meeting Proceedings, EE: Materials Science of Micromechanical Systems (MEMS) Devices III, Boston, Nov. 2000.

    3. S.-K. Fan, J.-A. Paik, P. Patterson, M. C. Wu, B.Dunn, and C.-J. Kim, "MEMS with Thin-Film Aerogel," presented at IEEE Conf. Micro Electro Mechanical Systems (MEMS’01), Interlaken, Switzerland, 2001.

    4. J.-A. Paik, S.-K. Fan, C.-J. Kim, M.C. Wu and B. Dunn, "Micromachining of Mesoporous Oxide Films for MEMS Structures," Journal of Mater. Res. Vol. 17, p. 212, 2002.

    5. R. Yokokawa, J-A. Paik, B. Dunn, N. Kitazawa, H. Kotera and C-J. Kim, "Mechanical properties of aerogel-like thin films used for MEMS," J. Micromech. Microeng. 14, 681, 2004.

    6. B.-Y. Tsui, K.-L. Fang, S.-D. Lee, "Anisotropic thermal conductivity of nanoporous silica film," IEEE Trans. Electron Device, vol. 48, No. 10, 2001.

    7. Ye YH, Badilescu S, Truong V.V. “Large-scale ordered macroporous SiO2 thin films by a template-directed method”, APPL PHYS LETT 81 (4): 616-618 JUL 22 2002.

    8. Yujie Sun, Gilbert C. Walker, “Two-Dimensional Self-Assembly of Latex Particles in Wetting Films on Patterned Polymer Surfaces”, J. Phys. Chem. B., 106, 2217-2223, 2002.

    9. Kalinina, O., Vickreva, O., Kumacheva, E. “Colloid Crystal Growth under Oscillatory Shear”, Adv. Mat. 2, 110-112, 2000.

    10. O. D. Velev and A. M. Lenhoff, "Colloidal Crystals as Templates for Porous Materials", Curr. Opinion Colloid Interface Sci., 5, 56, 2000.

    11. M. Young, E.P. Muntz, and G. Shiflett “The Knudsen Compressor As An Energy Efficient Micro-scale Vacuum Pump”, second NASA/JPL miniature pumps workshop, March 28, 2002.

    12. R. Feynman, “There’s Plenty of Room at the Bottom”, Journal of Micro Electro Mechanical Systems, vol. 1, pp. 60-66, 1959.

    13. T.B. Jones, "Electrostatics and the lab on a chip, " Invited Plenary Lecture presented at 2003 Institute of Physics Congress, March, 2003.

    14. Z. Yu; G. Xiang; L. Pan; L. Huang; Z. Yu; W. Xing; J. Cheng, "Negative Dielectrophoretic Force Assisted Construction of Ordered Neuronal Networks on Cell Positioning Bioelectronic Chips, " Biomedical Microdevices, Vol. 6, No. 4., 311, 2004.

    15. M. Hughes, “AC Electrokinetics: Applications for Nanotechnology”, Nanotechnology, 11, pp. 124-132, 2000.

    16. Malnar, B.; Balachandran, W.; Cecelja, F., "Separation of latex spheres using dielectrophoresis and fluid flow," Nanobiotechnology, IEE Proceedings-Volume 150, Issue 2, 1 Nov. 2003.

    17. H. Sano, H. Kabata, Osamu Kurosawa and Masao Washizu: "Dielectrohporetic Chromatography with Cross-Flow Injection", Technical Digest of The Fifteenth IEEE International Conference On Micro Electro Mechanical Systems (MEMS2002) p.11-14, 2002.

    18. Perch-Nielsen, I. R., Green, N. G. and Wolff, A.Numerical simulation of travelling wave induced electrothermal fluid flow. Journal of Physics D: Applied Physics 37, pp 2323-2330, 2004.

    19. Gascoyne, P., Mahidol, C., Ruchirawat, M., , Satayavivad J., Watcharasit, P., Becker, F., “Microsample preparation by dielectrophoresis’ isolation of malaria, Lab on a Chip, 1:(in press), 2002.

    20. T. Gong, D. W.M. Marr, “Electrically Switchable Colloidal Ordering in Confined Geometries”, Langmuir, 17, 2301-2304, 2001.

    21. T. Gong, D.T. Wu, D.W.M. Marr, “Two-Dimensional Electrohydrodynamically-Induced Colloidal Phases”, Langmuir, 18, 10064, 2002.

    22. O. D. Velev and E. W. Kaler, "Structured Porous Materials via Colloidal Crystal Templating: From Inorganic Oxides to Metals", Adv. Mater., 12, 531, 2000.

    23. M. Washizu, S. Suzuki, O. Kurosawa, T. Nishizaka, T. Shinohara, Molecular dielectrophoresis of bio polymers, IEEE Trans. Ind. Appl., 30, pp835-843, 1994.

    24. S. O. Lumsdon, O. D. Velev, and E. W. Kaler, " Two-dimension Crystallization of Microspheres by coplanar AC Electric Field, " Langmuir, 20, 2108, 2004.

    25. B. H. Jo, L. M. V. Lerberghe, K. M. Motsegood, D. J. Beebe, "Three-Dimensional Micro-Channel Fabrication in Polydimethylsiloxane (PDMS) Elastomer, " Journal of microelectromechanical systems, 9, pp. 76-81 (2000).

    26. D. Amani, C. Liu and N. Aluru, "Re-configurable fluid circuitsby PDMS elastomer micromachining", 12th IEEE International Conference on Micro Electro Mechanical Systems, 1999. MEMS '99, pp. 222-227, 1999.

    27. 林聖凱,發展不同特性微生物與抗生素感受性試驗之介電泳晶片,國立成功大學醫學工程研究所碩士論文,2004年。

    28. 莊達人,“VLSI 製造技術”,四版,高立圖書,台北縣 (2001)

    29. O. D. Velev, E. W. Kaler and A. M. Lenhoff, "A Class of Microstructured Particles via Colloidal Crystallization", Science, 287, 2240, 2000.

    30. Jiang P. , Cizeron J. , Bertone J. F. , Colvin V. L., "Preparation of macroporous metal films from colloidal crystals" , J. Am. Chem. Soc., 121, 7957, 1999.

    31. P. M. Tessier, O. D. Velev, A. T. Kalambur, J. F. Rabolt, A. M. Lenhoff and E. W. Kaler. "Assembly of Gold Nanostructured Films Templated by Colloidal Crystals and Use in Surface-Enhanced Raman Spectroscopy", J. Am. Chem. Soc., 122, 9554 (2000).

    32. K. Hosokawa, I. Shimoyama, H.Miura; "Two-dimensional micro-self-assembly using the surface tension of water", Sensors and Actuators 1996, A 57, 117-125.

    33. T.-S. Leu, H. -Y. Chen , F. -B. Hsiao, "Studies of particle holding, separating, and focusing using convergent electrodes in microsorters", J. Microfluidics and Nanofluidies(2004).

    34. T. B. Jones , "Liquid Dielectrophoresis on the Microscale," Journal of Electrostatics, vol. 51/52, pp. 290-299, 2001.

    35. M. Gunji and M. Washizu, “Dielectrophoretic Microfluidic Devices”, Proc. of IEJ/ESA Joint Symposium on Electrostatics, Kyoto, Japan, September, pp. 78-87, 2000.

    36. B. Prevo and O. D. Velev, "Controlled rapid deposition of structured coatings from micro-and nanoparticle suspensions" Langmuir, in press 2004.

    下載圖示 校內:立即公開
    校外:2005-07-29公開
    QR CODE