| 研究生: |
蔡旻謙 Tsai, Min-Chien |
|---|---|
| 論文名稱: |
利用介電泳力於微/奈米粒子自組裝之研究 Self–Assembly of Micro/Nano Particles by using Dielectrophoretic Force |
| 指導教授: |
呂宗行
Leu, Tzong-Shyng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 微機電系統工程研究所 Institute of Micro-Electro-Mechancial-System Engineering |
| 論文出版年: | 2005 |
| 畢業學年度: | 93 |
| 語文別: | 中文 |
| 論文頁數: | 91 |
| 中文關鍵詞: | 介電泳自組裝晶片 、介電泳力 、微/奈米粒子 |
| 外文關鍵詞: | Micro/nano particle, Dielectrophoretic self-assembly chip, Dielectrophoretic force |
| 相關次數: | 點閱:72 下載:7 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究係利用介電泳力於流體中驅動微/奈米粒子做組裝,並建立電極設計及製作能量。在實驗中,選用25μm及10μm大小的乳膠粒子組裝圖形,利用介電泳力在不同電壓頻率之下來驅動乳膠粒子作組裝,並用CCD拍攝圖片觀察乳膠粒子的組裝情況。在電極的設計方面,利用微機電製程技術,選用黃金當電極及導線。介電泳自組裝晶片經由氧氣電漿做表面親水性改質處理之後,使用聚二甲基矽氧烷(PDMS)定義其粒子組裝區域之分界。在實驗中,以四種不同形式之電極做觀測。對於平形式電極而言,200μm及500μm之自組裝區域,其驅動訊號為1.125MHz、20 V、1.125MHz、250 V時,有排列現象發生。四項式電極於400μm × 400μm之空間組裝乳膠粒子。經幾次實驗觀察得知其乳膠粒子於1.125 MHz、6.75 V排列最為均勻及緊密。六項式電極於100μm × 100μm之空間組裝乳膠粒子。其乳膠粒子於1.125 MHz、4V排列最為均勻及緊密。其實驗結果將以CCD圖片報告並呈現出來,可提供日後於微結構組裝一參考之方針。
This paper describes a method for self-assembly of micro/nano particle by using dielectrophoretic force. In this paper of parameters, including voltage and frequency of driving signal are studied to optimize the performance of the particle assembly. 25μm and 10μm diameter latex particles are chosen in this study. CCD camera is used to record image sequence.Electrodes are fabricated by using Micro Electro Mechanical System technology being particle assembly. Before bonding of polydimethylsiloxane (PDMS) film. O2 plasma is used to treat dielectrophoretic self-assembly chip surfaces, which cause the surface becoming hydrophilic. The experimental results show that the latex particle are assembled in 200μm and 500μm assembly region with driving signal V = 20(V)、f = 1.125 (MHz)、V = 250(V) and f = 1.125 (MHz). Quadrupole electrodes are excited with alternating voltages, and latex particle are assembled in the 400μm × 400μm assembly region, which is defined by PDMS film. Finally, a driving signal with voltage of V = 6.75(V) and frequency of f = 1.125 (MHz) are found to be optimize condition for the latex particle assembly. Hexapole electrodes are excited with a driving signal with voltage of V = 6.75(V) and frequency of f = 1.125 (MHz), and latex particle are assembled in the 100μm × 100μm assembly region.The experimental results under this driving signal, the latex particles can self-assembly into a organized structure which can provide beneficial guide for self-assembly of micro particle into form.
1. http://eande.lbl.gov/ECS/Aerogels/sahist.htm.
2. J.-A. Paik, B. Dunn, N. Kitazawa, S.-K. Fan, C.-J. Kim, M. C. Wu, “Preparation of Mesoporous Oxides for MEMS Structure,” 2000 MRS (Materials Research Society) Fall Meeting Proceedings, EE: Materials Science of Micromechanical Systems (MEMS) Devices III, Boston, Nov. 2000.
3. S.-K. Fan, J.-A. Paik, P. Patterson, M. C. Wu, B.Dunn, and C.-J. Kim, "MEMS with Thin-Film Aerogel," presented at IEEE Conf. Micro Electro Mechanical Systems (MEMS’01), Interlaken, Switzerland, 2001.
4. J.-A. Paik, S.-K. Fan, C.-J. Kim, M.C. Wu and B. Dunn, "Micromachining of Mesoporous Oxide Films for MEMS Structures," Journal of Mater. Res. Vol. 17, p. 212, 2002.
5. R. Yokokawa, J-A. Paik, B. Dunn, N. Kitazawa, H. Kotera and C-J. Kim, "Mechanical properties of aerogel-like thin films used for MEMS," J. Micromech. Microeng. 14, 681, 2004.
6. B.-Y. Tsui, K.-L. Fang, S.-D. Lee, "Anisotropic thermal conductivity of nanoporous silica film," IEEE Trans. Electron Device, vol. 48, No. 10, 2001.
7. Ye YH, Badilescu S, Truong V.V. “Large-scale ordered macroporous SiO2 thin films by a template-directed method”, APPL PHYS LETT 81 (4): 616-618 JUL 22 2002.
8. Yujie Sun, Gilbert C. Walker, “Two-Dimensional Self-Assembly of Latex Particles in Wetting Films on Patterned Polymer Surfaces”, J. Phys. Chem. B., 106, 2217-2223, 2002.
9. Kalinina, O., Vickreva, O., Kumacheva, E. “Colloid Crystal Growth under Oscillatory Shear”, Adv. Mat. 2, 110-112, 2000.
10. O. D. Velev and A. M. Lenhoff, "Colloidal Crystals as Templates for Porous Materials", Curr. Opinion Colloid Interface Sci., 5, 56, 2000.
11. M. Young, E.P. Muntz, and G. Shiflett “The Knudsen Compressor As An Energy Efficient Micro-scale Vacuum Pump”, second NASA/JPL miniature pumps workshop, March 28, 2002.
12. R. Feynman, “There’s Plenty of Room at the Bottom”, Journal of Micro Electro Mechanical Systems, vol. 1, pp. 60-66, 1959.
13. T.B. Jones, "Electrostatics and the lab on a chip, " Invited Plenary Lecture presented at 2003 Institute of Physics Congress, March, 2003.
14. Z. Yu; G. Xiang; L. Pan; L. Huang; Z. Yu; W. Xing; J. Cheng, "Negative Dielectrophoretic Force Assisted Construction of Ordered Neuronal Networks on Cell Positioning Bioelectronic Chips, " Biomedical Microdevices, Vol. 6, No. 4., 311, 2004.
15. M. Hughes, “AC Electrokinetics: Applications for Nanotechnology”, Nanotechnology, 11, pp. 124-132, 2000.
16. Malnar, B.; Balachandran, W.; Cecelja, F., "Separation of latex spheres using dielectrophoresis and fluid flow," Nanobiotechnology, IEE Proceedings-Volume 150, Issue 2, 1 Nov. 2003.
17. H. Sano, H. Kabata, Osamu Kurosawa and Masao Washizu: "Dielectrohporetic Chromatography with Cross-Flow Injection", Technical Digest of The Fifteenth IEEE International Conference On Micro Electro Mechanical Systems (MEMS2002) p.11-14, 2002.
18. Perch-Nielsen, I. R., Green, N. G. and Wolff, A.Numerical simulation of travelling wave induced electrothermal fluid flow. Journal of Physics D: Applied Physics 37, pp 2323-2330, 2004.
19. Gascoyne, P., Mahidol, C., Ruchirawat, M., , Satayavivad J., Watcharasit, P., Becker, F., “Microsample preparation by dielectrophoresis’ isolation of malaria, Lab on a Chip, 1:(in press), 2002.
20. T. Gong, D. W.M. Marr, “Electrically Switchable Colloidal Ordering in Confined Geometries”, Langmuir, 17, 2301-2304, 2001.
21. T. Gong, D.T. Wu, D.W.M. Marr, “Two-Dimensional Electrohydrodynamically-Induced Colloidal Phases”, Langmuir, 18, 10064, 2002.
22. O. D. Velev and E. W. Kaler, "Structured Porous Materials via Colloidal Crystal Templating: From Inorganic Oxides to Metals", Adv. Mater., 12, 531, 2000.
23. M. Washizu, S. Suzuki, O. Kurosawa, T. Nishizaka, T. Shinohara, Molecular dielectrophoresis of bio polymers, IEEE Trans. Ind. Appl., 30, pp835-843, 1994.
24. S. O. Lumsdon, O. D. Velev, and E. W. Kaler, " Two-dimension Crystallization of Microspheres by coplanar AC Electric Field, " Langmuir, 20, 2108, 2004.
25. B. H. Jo, L. M. V. Lerberghe, K. M. Motsegood, D. J. Beebe, "Three-Dimensional Micro-Channel Fabrication in Polydimethylsiloxane (PDMS) Elastomer, " Journal of microelectromechanical systems, 9, pp. 76-81 (2000).
26. D. Amani, C. Liu and N. Aluru, "Re-configurable fluid circuitsby PDMS elastomer micromachining", 12th IEEE International Conference on Micro Electro Mechanical Systems, 1999. MEMS '99, pp. 222-227, 1999.
27. 林聖凱,發展不同特性微生物與抗生素感受性試驗之介電泳晶片,國立成功大學醫學工程研究所碩士論文,2004年。
28. 莊達人,“VLSI 製造技術”,四版,高立圖書,台北縣 (2001)
29. O. D. Velev, E. W. Kaler and A. M. Lenhoff, "A Class of Microstructured Particles via Colloidal Crystallization", Science, 287, 2240, 2000.
30. Jiang P. , Cizeron J. , Bertone J. F. , Colvin V. L., "Preparation of macroporous metal films from colloidal crystals" , J. Am. Chem. Soc., 121, 7957, 1999.
31. P. M. Tessier, O. D. Velev, A. T. Kalambur, J. F. Rabolt, A. M. Lenhoff and E. W. Kaler. "Assembly of Gold Nanostructured Films Templated by Colloidal Crystals and Use in Surface-Enhanced Raman Spectroscopy", J. Am. Chem. Soc., 122, 9554 (2000).
32. K. Hosokawa, I. Shimoyama, H.Miura; "Two-dimensional micro-self-assembly using the surface tension of water", Sensors and Actuators 1996, A 57, 117-125.
33. T.-S. Leu, H. -Y. Chen , F. -B. Hsiao, "Studies of particle holding, separating, and focusing using convergent electrodes in microsorters", J. Microfluidics and Nanofluidies(2004).
34. T. B. Jones , "Liquid Dielectrophoresis on the Microscale," Journal of Electrostatics, vol. 51/52, pp. 290-299, 2001.
35. M. Gunji and M. Washizu, “Dielectrophoretic Microfluidic Devices”, Proc. of IEJ/ESA Joint Symposium on Electrostatics, Kyoto, Japan, September, pp. 78-87, 2000.
36. B. Prevo and O. D. Velev, "Controlled rapid deposition of structured coatings from micro-and nanoparticle suspensions" Langmuir, in press 2004.