簡易檢索 / 詳目顯示

研究生: 林柏宇
Lin, Bo-Yu
論文名稱: 利用無機沈澱溫控實驗探討碳酸鈣中穩定同位素及微量元素的分佈特性
Distribution of stable isotope and trace element in inorganic calcium carbonate: Laboratory temperature controlled experiment
指導教授: 游鎮烽
You, Chen-Feng
學位類別: 碩士
Master
系所名稱: 理學院 - 地球科學系
Department of Earth Sciences
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 99
中文關鍵詞: 同位素硼同位素方解石穩定同位素溫度代用指標微量元素無機沈澱碳酸鈣
外文關鍵詞: calcium carbonate, calcite, isotope, proxy, stable isotope
相關次數: 點閱:173下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要
    本研究系統性控制八個溫度(5 - 40℃),固定溶液離子濃度和pH值,利用固定流速導入法固定碳酸鈣生長速率無機沈澱生成碳酸鈣。以拉曼光譜儀及掃瞄式電子顯微鏡確定礦物相為方解石,以高精度質譜術分析碳酸鈣內的微量元素Li、B、Mg、Sr、Ba和U濃度及B、O和C同位素,加以探討溫度與微量元素濃度及穩定同位素之關係,以期瞭解在無機作用下微量元素與穩定同位素對於溫度分化的關係,找出古溫度合適代用指標。
    結果顯示本研究無機沈澱方解石Li/Ca接近實際鈣化情形,溫度方程式:D(Li/Ca)=0.0068e-0.0337T;B/Ca有潛力成為古溫度的代用指標,溫度方程式:D(B/Ca)=0.0088e-0.0395T;Mg/Ca絕對值較自然界高許多,顯示自然界Mg/Ca比值除受控於溫度外,仍有其他因子影響,溫度方程式:D(Mg/Ca)=0.0115e0.0366T;Sr/Ca方解石與霰石回歸線明顯區別,顯示進入碳酸鈣行為受礦物相影響大,溫度方程式:D(Sr/Ca)=0.2676e-0.0318T;Ba/Ca與無機沈澱霰石雖趨勢相同但絕對值有所差異,溫度方程式:D(Ba/Ca)=0.7296e-0.0490T;δ18O與溫度呈負相關且與理論計算方解石值相符,證實此無機沈澱方法,氧同位素可達平衡,溫度方程式δ18OPDB(‰)= -0.23 T(℃) - 3.19。U/Ca比值和δ13C與溫度無關。過去研究認為碳酸鈣中硼同位素受溫度影響不大,但本研究中碳酸鈣硼同位素隨溫度變化在5 - 40℃ 變化~17 ‰ (δ11B = -9.43 ~ -28.43 ‰),且與溫度有良好相關性δ11B(‰) = 0.52T(℃) - 30.10,欲使用硼同位素作為環境指標,需謹慎考慮溫度效應影響。

    Abstract
    Understanding the real correlation between incorporation of trace metals into carbonate and temperature is the most important issue for the applications of paleoceanographic and paleoclimatic researches. In this study, calcium carbonates were inorganically precipitated under eight well-controlled temperatures ranged from 5 to 40°C. Concentrations of trace elements and pH values in parent solution were maintained in order to obtain a constant precipitation rate. All of the inorganic precipitations were identified to be pure calcite crystals by using Raman spectrometry and SEM techniques. Distribution coefficients (D) for trace elements (Li, B, Mg, Sr, Ba, and U) and stable isotopes (B, C and O) were then calculated based on high precision measurements on trace elements (HR-ICP-MS) and stable isotopes (TIMS and IRMS) both in calcites and parent solutions.
    Preliminary results showed that DLi/Ca is close to the biogenic carbonates (DLi/Ca = 0.0068e-0.0337T), suggesting that it can faithfully record the ambient seawater Li concentration during calcification of calcite. However, DMg/Ca, DSr/Ca and DB/Ca can be discriminated from those in natural system (DMg/Ca = 0.0115e0.0366T, and DSr/Ca = 0.2676e-0.0318T, DB/Ca = 0.0088e-0.0395T), but are highly correlated to temperature effect, indicating that other factors possibly exert an influence on the co-precipitations of Mg, Sr and B in calcite. Furthermore, incorporation of Sr into calcite seems to be affected by mineral structure based on a significant discrepancy between the previous works on aragonite and the present study on calcite. Of special interest is that DBa/Ca follows the thermodynamic substitution (DBa/Ca = 0.7296e-0.0490T), suggesting Ba/Ca may at least in part be influenced by changes in temperature. Therefore, care should be taken about temperature effect on Ba/Ca record in carbonates (e.g., coral Ba/Ca as a proxy for sediment flux and/or regional upwelling).
    On the other hand, according to previous study on biogenic carbonate, temperature fractionation of boron isotope could be negligible while calcifying. Unexpectedly, there reveals a good relationship between boron isotopic composition and temperature (δ11B (‰) = 0.52T (℃) - 30.10). Furthermore, a range of approximately 17‰ (δ11B = -9.43 ~ -28.43 ‰) variation in δ11B is consistent with published inorganic precipitation experiments. More investigations are still required to further confirm the potential contribution of temperature on calcitic δ11B.

    目錄 摘要…………………………………………………………………Ⅰ Abstract…………………………………………………………….Ⅱ 誌謝…………………………………………………………………Ⅲ 章節目錄……………………………………………………………Ⅳ 表目錄………………………………………………………………Ⅶ 圖目錄………………………………………………………………Ⅷ <章節目錄> 第一章 前言…………………………………………………………1 1.1 研究背景 …………………………………………………1 1.2 研究目的、動機 …………………………………………1 1.3 前人研究 …………………………………………………2 1.3.1 分配係數與同位素分化係數 ……………………2 1.3.2 無機沈澱實驗方法 ………………………………3 1.3.3 微量元素和同位素代用指標(proxy)………… 5 第二章 原理 ………………………………………………………12 2.1 碳酸鈣……………………………………………………12 2.2 沈澱原理…………………………………………………12 2.3 影響沈澱機制……………………………………………13 2.4 影響微量元素分化機制…………………………………14 2.5 影響同位素的分化機制…………………………………15 2.5.1 硼同位素…………………………………………15 2.5.2 氧同位素…………………………………………16 2.5.3 碳同位素 …………………………………………17 2.6 分析原理 …………………………………………………17 2.6.1 拉曼光譜儀(Raman spectrometer)………… 17 2.6.2 掃瞄式電子顯微鏡(SEM) ……………………18 2.6.3 感應耦合電漿質譜儀(ICP-MS)……………… 19 2.6.4 熱游離源質譜儀(TIMS) ………………………21 第三章 步驟與方法…………………………………………………22 3.1 樣品生成 …………………………………………………22 3.2 實驗狀態控制及校正 3.2.1 晶種 ……………………………………………… 23 3.2.2 生長速率 ………………………………………… 24 3.2.3 溫度…………………………………………………24 3.2.4 pH值…………………………………………………27 3.2.5 溶液濃度……………………………………………27 3.3 清洗及取樣…………………………………………………28 3.4 實驗環境及器皿清洗………………………………………28 3.5 分析…………………………………………………………28 3.5.1 拉曼光譜儀(Raman spectrometer)……………28 3.5.2 掃瞄式電子顯微鏡(SEM)……………………… 31 3.5.3 感應耦合電漿質譜儀(ICP-MS)…………………31 3.5.4 熱游離質譜儀(TIMS)……………………………32 3.5.5 氣體比值型質譜儀(IRMS)………………………34 3.5.6 氣相比值質譜儀…………………………………… 34 第四章 結果與討論 ………………………………………………… 36 4.1 拉曼光譜儀分析結果……………………………………… 36 4.2 掃瞄式電子顯微鏡結果……………………………………40 4.3 碳酸鈣微量元素與溫度關係………………………………44 4.3.1 Li/Ca比值……………………………………………47 4.3.2 B/Ca比值……………………………………………50 4.3.3 Mg/Ca比值 ……………………………………… 52 4.3.4 Sr/Ca比值 ………………………………………… 55 4.3.5 Ba/Ca比值 …………………………………………58 4.3.6 U/Ca比值……………………………………………60 4.3.7 微量元素量測結果與理論計算討論………………61 4.4 無機沈澱碳酸鈣硼同位素與溫度關係 ………………… 68 4.4.1 溫度對硼同位素影響………………………………68 4.4.2 pH值對硼同位素影響………………………………69 4.4.3 與前人文獻比較……………………………………72 4.5 無機沈澱碳酸鈣氧同位素與溫度關係……………………75 4.6 無機沈澱碳酸鈣碳同位素與溫度關係……………………81 第五章 結論………………………………………………………… 83 第六章 參考文獻…………………………………………………… 85 <表目錄> 表1-1、生物性碳酸鈣環境記錄代用指標,以珊瑚為例……………11 表4-1、水溶液及各種礦物25℃時形成的反應焓及熵………………45 表4-2、微量元素進入碳酸鈣時反應式25℃時的反應焓……………46 表4-3、40℃與5℃時的Kd比值計算結果…………………………… 62 表4-4、無機沈澱方解石中各微量元素相對於鈣之分配係數……… 63 表4-5、溫度回歸方程式與前人文獻比較…………………………… 64 表4-6、實際量測分配係數與理論計算之比較………………………65 表4-7、氧同位素分化係數換成103lnα與溫度(凱氏溫度)倒數(103/T)相比較 ………………………………………………………78 表4-8、碳酸鹽沈澱樣品中δ11B、δ13C和δ18O同位素值………………82 <圖目錄> 圖1-1、固定流速導入法…………………………………………………5 圖3-1、實驗流程圖…………………………………………………… 22 圖3-2、實驗裝置圖…………………………………………………… 25 圖3-3、無機沈澱水浴溫度控制……………………………………… 26 圖3-4、無機沈澱裝置照片…………………………………………… 26 圖3-6、拉曼儀器圖(正面)………………………………………… 29 圖3-7、雷射光射出之情形……………………………………………30 圖3-8、拉曼儀器圖(反面)…………………………………………30 圖3-9、感應耦合電漿質譜儀為Finnigan Element 2…………………32 圖3-10、固態熱離子源質譜儀TIMS(Triton TI) ………………… 33 圖3-11、氣體比值型質譜儀IRMS …………………………………… 34 圖3-12、中研院地球所氣相比值質譜儀VG SIRA-10 ……………… 35 圖4-1、標準方解石拉曼光譜…………………………………………37 圖4-2、標準霰石拉曼光譜……………………………………………37 圖4-3、不同溫度下方解石拉曼光譜…………………………………38 圖4-4、無機沈澱中方解石與霰石之拉曼光譜比較…………………39 圖4-5、方解石常見晶體………………………………………………40 圖4-6、掃瞄式電子顯微鏡拍攝之SEI影像 ………………………… 41 圖4-7、掃瞄式電子顯微鏡拍攝之SEI影像 ………………………… 41 圖4-8、掃瞄式電子顯微鏡拍攝之SEI影像 ………………………… 42 圖4-9、掃瞄式電子顯微鏡拍攝之SEI影像 ………………………… 42 圖4-10、掃瞄式電子顯微鏡拍攝之SEI影像…………………………43 圖4-11、掃瞄式電子顯微鏡拍攝之SEI影像…………………………43 圖4-12、無機沈澱方解石中D(Li/Ca)比值與溫度關係………………47 圖4-13、本研究無機沈澱方解石D(Li/Ca)與溫度關係和前人文獻比較 ………………………………………………………… 49 圖4-14、無機沈澱方解石中D(B/Ca)比值與溫度關係………………50 圖4-15、本研究無機沈澱方解石D(B/Ca)與溫度關係和前人文獻比較 ………………………………………………………… 51 圖4-16、無機沈澱方解石中D(Mg/Ca)值與溫度關係 ……………… 52 圖4-17、本研究無機沈澱方解石D(Mg/Ca)與溫度關係和前人文獻比較……………………………………………………………53 圖4-18、無機沈澱方解石中D(Sr/Ca)比值與溫度關係………………55 圖4-19、本研究無機沈澱方解石D(Sr/Ca)與溫度關係和前人文獻比較 …………………………………………………………56 圖4-20、無機沈澱方解石中D(Ba/Ca)值與溫度關係…………………58 圖4-21、本研究無機沈澱方解石D(Ba/Ca)與溫度關係和前人文獻比較……………………………………………………………59 圖4-22、無機沈澱方解石中D(U/Ca)值與溫度關係 ………………… 60 圖4-23、本研究中硼同位素隨溫度變化情形 ………………………69 圖4-24、水體中兩種型態的硼濃度相對含量 ……………………… 71 圖4-25、11B易形成B(OH)3結構而10B則相對偏好形成B(OH)4-結構硼同位素比值也會隨著pH值的改變而有變化 …………… 71 圖4-26、本研究不同溫度碳酸鈣相對於母液標準化後分化情形與自然界生物性碳酸鈣和海水分化之硼同位素值比較,與水體pH值作圖………………………………………………………73 圖4-27、本研究溫度(℃)與方解石中氧同位素δ18O(‰)作圖……………………………………………………………76 圖4-28、碳酸鈣-水體氧同位素分化係數換成103lnα與溫度(凱氏溫度)倒數(103/T)與前人文獻比較………………………… 79 圖4-29、本研究碳同位素隨溫度變化可看見本無機沈澱中碳同位素與溫度變化無關 …………………………………………… 81

    第六章 參考文獻
    中文部分:
    王博賢(2005)珊瑚骨骼硼同位素記錄與其環境意義,國立成功大學地球科學所碩士論文,第5-77頁。
    江旭楨、楊惠珍(1992)質譜分析專輯,行政院國家科學委員會精密儀器發展中心,台北,共390頁。
    李佩倫(2000) BaSO4-PbSO4固溶系列之高溫高壓相變研究,國立成功大學地球科學研究所博士論文,第14-15頁。
    林怡美(1992) 恆春地區晚更新世二枚貝殼體穩定同位素及化學元素訊號所指示之環境變遷,國立師範大學地球科學研究所碩士論文,第2-5頁。
    周根陶,鄭永飛(2000) 碳酸鈣-水體系氧同位素分餾系數的低溫實驗研究,地學前緣(中國地質大學,北京),第七卷第二期,第321-337頁。
    黃恩萍(2003)角閃石類礦物之拉曼光譜研究,國立成功大學地球科學所碩士論文,第1-20頁。
    簡文鎮 (1991) 以凝聚理論探討碳酸鈣之成核引發時間,國立台灣大學化學工程學研究所博士論文,第1-48頁。

    英文部分:
    Bard C. R., Blamart D., Cuif J. P., Leclerc A. J. (2003) Microanalysis of C and O isotopes of azooxanthellate and zooxanthellate corals by ion microprobe. Coral Reefs 22, 405-415
    Bard C. R., Chaussidon M., Lanord C. F. (2003) pH control on oxygen isotopic composition of symbiotic corals. Earth Planet. Sci. lett. 215, 275-288
    Beck J. W., Edward R. L., Ito E., Taylor F. W., Recy J., Rougerie F., Joannot P., Henin C. (1992) Sea-surface temperature from coral skeleton Sr/Ca ratios. Science, 257, 644-647
    Berner R. A. (1975) The role of Magnesium in the crystal growth of calcite and aragonite from seawater. Geochim. Cosmochim. Acta, 39, 489-504
    Berner R. A. and Morse J. W. (1974) Dissolution kinetics of calcium carbonate in seawater. Ⅳ. Theory of calcite dissolution. Amer. Jour Sci, 274, 108-134
    Berner R. A. and Wilde Pat (1972) Dissolutino kineties of calcium carbonate in seawater. Ⅰ Saturation state parameters for kinetic calculation. Amer. Jour Sci, 272, 826-839
    Bischoff J. L. (1968) Catalysis, inhibition and the calcite-aragonite problem: ⅠThe aragonite-calcite transformation. Amer. Jour. Sci, 266, 65-79
    Bischoff J. L. and Fyfe C. (1968) Catalysis, inhibition and the calcite-aragonite problem: Ⅱ The vaterite-aragonite transformation. Amer. Jour. Sci, 266, 80-90
    Bottinga Y. (1968) Calculation of fractionation factors for carbon and oxygen isotopic exchange in the system calcite-carbon dioxide-water. J. Chem. Phys. 72, 800-808
    Brewer P. (1975) Minor elements in sea water. Chemical Oceanography, 8, 2nd ed., J. P. Riley and G. Skirrow, Eds., Academic Press, New York, 416-496
    Broecker W. S., Peng T. H. (1982) Tracers in the Sea: Palisades, New York, Lamont Doherty Earth Observatory, 690p.
    Burton E. A. and Walter L. M. (1987) Relative precipitation rates of aragonite and Mg calcite from seawater: temperature or carbonate ion control? Geology, 15, 111-114
    Burton E. A. and Walter L. M. (1988) Experimental investigation of Mg/Ca and sulfate as controls on temporal variations in mineralogy of marine carbonate. Geol. Soc. Am. Abstr. Prog., 20, A219
    Burton E. A. and Walter L. M. (1991) The effects of pCO2 and temperature on magnesium incorporation in calcite in seawater and MgCl2-CaCl2 solutions. Geochemica et Cosmochimica Acta, 55, 777-785
    Chacko T., Mayeda T. K., Clayton R. N., and Goldsmith J. R. (1991) Oxygen and carbon isotope fractionation between CO2 and calcite. Geochim. Cosmochim. Acta 55, 2867-2882
    Chang V. T. C. (2002) Mg and Ca isotope fractionation during CaCO3 biomineralisation, PhD thesis, Oxford University,.
    Chang V. T. C., Willicms R. J. P., Makishima A., Belshawl N. S., O’Nions R. K. (2004) Mg and Ca isotope fractionation during CaCO3 biomineralisation. Biochemical and Biophysical Research Communication, 323, 79-85
    Davis K. J., Dove P. M and De Yoreo J. J. (2000) The role of Mg2+ as an impurity in calcite growth. Science 290, 1134-1137
    Dean J. A., Lange’s Handbook of Chemistry, Fourteenth edition, McGraw-Hill, New York, 1992
    de Villiers S., Shen G. T., Nelson B. K. (1994) The Sr/Ca-temperature relationship in coralline aragonite: Influence of variability in (Sr/Ca)seawater and skeletal growth parameters. Geochimica et Cosmochimica Acta, 58, 197-208
    Delaney M. L., Be A. W. H., Boyle E. A. (1985) Li, Sr, Mg and Na in foraminiferal calcite shells from laboratory culture, sediment traps, and sediment cores, Geochim. Cosmochim. Acta 49, 1327-1341
    Delaney M. L., Boyle E. A. (1986) Lithium in foraminiferal shells: implications for high-temperature hydrothermal circulation fluxes and oceanic crustal generation rates. Earth and Planetary Science Letters, 20, 91-105
    Delaney M. L., Popp B. M., Lepzelter C. G., Anderson T. F. (1989) Lithium-to- calcium ratios in modern, Genozoic and Paleozoic articulate brachiopod shells, Paleoceanography 4, 681-691
    Deleuze M. and Brantley S. (1997) Inhibition of calcite crystal growth by Mg2+ at 100℃ and 100 bars: Influence of growth regime. Geochim. Cosmochim. Acta, 61, 1475-1485
    Dietzel M., Gussone N., Eisenhauer A. (2004) Co-precipitation of Sr2+ and Ba2+ with aragonite by membrane diffusion of CO2 between 10 and 50℃. Ghemical Geology 203, 139-151
    Dodd J. R. (1965) Environmental control of strontium and magnesium in Mytilus. Geochimca et Cosmochimica Acta, 29, 385-398
    Dromgoole E. L. and Walter L. M. (1990) Iron and manganese incorporation into calcite: Effects of growth kinetics, temperature, and solution chemistry. Chem. Geol, 81, 311-336
    Epstein S., Mayeda T. (1953) Variation of 18O content of waters from natural sources. Geochim. Cosmochim. Acta, 4, 213-224
    Fallon S. J., McCulloch M. T., Woesik R. V., Sinclair D. J. (1999) Corals at their latitudinal limits: laser ablation trace element systematics in Porites from Shirigai Bay, Japan. Earth and Planetary Science Letters, 172, 221-238
    Fandini A. and Schnepel F. M. (1989) Vibrational Spectroscopy-Methods and Applications, Ellis Horwood Limmited, England, 205.
    Gaillardet J., Allegre C. J. (1995) Boron isotopic compositions of carals: seawater or diagenesis record?, Earth Planet. Sci. Lett. 136, 665-676
    Goldberg E. (1965) Minor elements I nsea water, Chemical Oceanography, 1, 1st ed., J. P Riley and G. Skirrow, Eds., Academic Press, New York, 163-196
    Grossman E. L. (1982) Stable Isotopes in Live Benthic Foraminifera From the Southern California Borderland. Ph. D. dissertation, University of Southern California, Los Angeles.
    Grossman E. L. and Ku T. L. (1981) Aragonite-water isotopic paleo-temperature scale based on the benthic foraminifera Hoeglundina elegans. Geol. Soc. Am., Abstr. Prog. 13, 464
    Grossman E. L. and Ku T. L. (1986) Oxygen and carbon isotopefractionation in biogenic aragonite. Temperature effects. Chem. Geol. 59, 59-74
    Hall J. M., Chan L. H. (2004) Li/Ca in multiple species of benthic and planktonic foraminifera: thermocline, latitudinal, and glacial-interglacial variation. Geochim. Cosmochim. Acta 68, 529-545
    Hallam A., Preic N. B. (1968) Environmental and biochemical control of strontium in shells of Cardium edule. Geochimca et Cosmochimica Acta, 39, 319-328
    Hart S. R., Cohen A. L. (1996) An ion probe study of annual cycles of Sr/Ca and other trace elements in corals, Geochim. Cosmochim. Acta 60, 3075-3084
    Hattori K. and Halas S. (1982) Calculation of oxygen isotope fractionation between uranium dioxide, uranium trioxide and water. Geochim. Cosmochim. Acta. 46, 1863-1868
    Hemming N. G., Guilderson T P., Fairbanks R. G. (1998) Seasonal variations in the boron isotopic composition of coral: A productivity signal? Global Biogeochem. Cy. 12, 581-586
    Hemming N. G., Hanson G. N. (1992) Boron isotopic composition and concentration in modern marine carbonate. Geochim. Cosmochim. Acta 56, 537-543
    Hendry J. P., Perkins W. T., and Bane T. (2001) Short-term environmental change in a Jurassic lagoon deduced from geochemical trends in aragonite bivalve shells. Geological Society of America Bulletin 113, 790-798
    Hofmeister A. M. and Chopelas A. (1991) Vibrational spectroscopy of end member silicate garnet, Phys. Chem. Minerals., 17, 503-526
    Hong W., Keppens E., Nielsen P., and Vanriet A. (1995) Oxygen and carbon isotope study fo the Holocene oyster reefs and paleoenvironmental reconstruction of nte northwest coast of Bohai Bay, China. Marine Geology 124, 289-302
    Hönisch B., Hemming N. G., Grottoli A. G., Amat A., Hanson G. N., Buma J. (2004) Assessing scleractinian corals as recorders for paleo-pH: Empirical calibrations and vital effects. Geochim. Cosmochim. Acta 68, 3675-3685
    Hulston J. R. (1978) Methods of calculating isotopic fractionation in minerals. Robinson P W, ed. Stable Isotopes in Earth Sciences. DSIR Bull, 220, 211-219
    IUPAC (1998) Isotopic compositions of the elements 1997. Pure Appl. Chem. 70, 217-235
    Kakihana H., Kotaka M., Satoh S., Nomura M., Okamoto M. (1977) Fundamental studies on the ion-exchange separation of boron isotopes. Bull Chem. Soc. Jap. 50, 158-163
    Katz A., Starinsky A. (1972) Strontium behavior in the aragonite-calcite transformation: An experimental study at 40-98℃. Geochim. Cosmochim. Acta, 36, 481-496
    Katz A. (1973) The interaction of magnesium with calcite during crystal growth at 25-90℃ and one atmosphere. Geochimica et Cosmochimica Acta, 37, 1563-1586
    Kieffer S. W. (1982) Thermodynamics and lattice vibration of minerals: 5. Application to phase equilibria, isotope fractionation, and high pressure thermodynamic properties. Rev. Geophys. Space Phys. 20, 827-849
    Kieffer S. W. (1985) Heat capacity and entropy: systematic relations to the lattice vibrations. In Mineralogical Society of America Rev. in Mineral., 14, 65-126.
    Kim S. T. and O’Neil J. R. (1997) Equilibrium and nonequilibrium oxygen isotope effects in synthetic carbonates. Geochim. Cosmochim. Acta 61, 3461-3475
    Kim S. T. and O’Neil J. R. (2005) Comment on “An experimental study of oxygen isotope fractionation between inorganically precipitated aragonite and water at low temperatures” by G.–T. Zhou and Y.-F. Zheng. Cheochim. Cosmochim. Acta 69, 3195-3197
    Kinsman D. J. J. and Holland H. D. (1969) The co-precipitation of cations with CaCO3? Ⅳ. The co-precipitation of Sr2+ with aragonite between 16 and 96℃. Geochim. Cosmochim. Acta, 33, 1-17
    Klein R. T., Lohmann K. C., Thayer C. W. (1996) Bivalve skeletons record sea-surface temperature and δ18O via Mg/Ca and 18O/16O ratios: Geology, 24, 415-418
    Klein C., Hurlbut C. S. (2000) Manual of Mineralogy 21st ed.
    Lea D. W. (1999) Trace elements in foraminiferal calcite, 1n: B. K. Sen Gupta (Ed.), Modern Foraminifera, Kluwer Academic Publishing, Dordrecht, 259-277
    Lea D. W., Mashiotta T. A., Spero H. J. (1999) Controls on magnesium and strontium uptake in planktonic foraminifera determined by live culturing. Geochimica et Cosmochimica Acta, 63, 2369-2379
    Lea D. W., Shen G. T., and Boyle E. A. (1989) Coralline barium records temporal variability in equatorial Pacific upwelling. Nature 340, 373-376
    Lin Yi-Pin. and Singer Philip C. (2005) Effects of seed material and solution composition on calcite precipitation. Geochimica et Cosmochimica Acta., 69, 4495-4504
    Lutz R. A. (1981) Electron probe analysis of strontium in mussel (Bivalvia, Mytilidae) shells: Feasibility of estimating water temperature. Hydrobiologia, 83, 377-382
    Marriott C. S., Henderson G. M., Belshaw N. S., Tudhope A. W. (2004a) Temperature dependence of δ7Li, δ44Ca and Li/Ca during growth of calcium carbonate. Earth and Planetary Science Leters 222, 615-624
    Marriott C. S., Henderson G. M., Crompton R. (2004b) Effect of mineralogy, salinity, and temperature on Li/Ca and Li isotope composition of calcium carbonate. Chemical Geology, 212, 5-15
    McConnaughey T. A. (1989) 13C and 18O isotopic disequilibrium in biological carbonates: Patterns. Geochem. Cosmochem. Acta 53, 151-162
    McConnaughey T. A., and Whelan J. F. (1997) Calcification generates protons for nutrient and bicarbonate uptake. Earth Sci. Rev. 42, 95-117
    McConnaughey T. A. (2003) Sub-equilibrium oxygen-18 and carbon-13 levels in biological carbonates: carbonate and kinetic models. Coral Reefs 22, 316-327
    McCrea J. M. (1950) On the isotopic chemistry of carbonates and a paleotemperature scale. J Chem Phys, 18, 849-857
    Mclntire W. L. (1963) Trace element partition coefficients - a review of theory and applications to geology. Geochim. Cosmochim. Acta 27, 1209-1264
    McMillian P. F. (1985) Bibration spectroscopy in the mineral sciences, Mineral. Soc. Of Am., 14, 9-63
    Min G. R., Edwards R. L., Taylor F. W., Recy J. and Gallup C. D. (1995) Annual cycles of U/Ca in coral skeletons and U/Ca thermometry. Geochim. Cosmochim Acta 59, 2025-2042
    Morse J. W. (1974a) Dissolution kinetics of calcium carbonate in seawater. Ⅲ A new method for the study of calcium carbonate reaction kinetics. Amer. Jour. Sci, 274, 97-107
    Morse J. W. (1974b) Dissolution kinetics of calcium carbonate in seawater. Ⅴ Effects of natural inhibitors and the position of the chemical lysocline. Amer. Jour. Sci, 274, 638-647
    Morse J. W. (1978) Dissolution kinetics of calcium carbonate in seawater: Ⅵ The near-equlibrium dissolution kinetics of calcium carbonate-rich deep sea sediments. Amer. Jour. Sci, 278, 344-353
    Morse J. W. and Berner R. A. (1972) Dissolution kinetics of calcium carbonate in seawater. Ⅱ A kinetics origin for the lysocline. Amer. Jour. Sci, 227, 840-851
    Morse J. W., Mucci A. and Millero F. J. (1980) The solubility of calcite and aragonite in seawater of 35% salinity at 25℃ and atmospheric pressure. Geochim. Cosmochim. Acta, 44, 85-94
    Mucci A. (1983) The solubility of calcite and aragonite in seawater at various salinities, temperatures, and one atmosphere total pressure. Amer. Jour. Sci, 283, 780-799
    Mucci A. (1986) Growth kinetics and composition of magnesian calcite overgrowths precipitated from weawater: Quantitative influence of orthophosphate ions. Geochim. Cosmochim. Acta, 50, 2255-2265
    Mucci A. (1987) Influence of temperature on the composition of magnesian calcite overgrowths precipitated from seawater. Geochim. Cosmochim. Acta, 51, 1977-1984
    Mucci A. and Morse J. W. (1983) The incorporation of Mg2+ and Sr2+ into calcite overgrowths: influence of growth rate and solution composition. Geochim. Cosmochim. Acta, 47, 217-233
    Mussi A., Canuel R. and Zhong S. J. (1989) The solubility of calcite and aragonite in sulfate-free seawater and the seeded growth kinetics and composition of the precipitates at 25℃. Chemical Geology, 74, 309-320
    Nakano T., Nakamura E. (1998) Static multicollection of Cs2BO2+ ions for precise boron isotopic analysis with positive thermal ionization mass spectrometry. Int. J. Mass Spectrom. 176, 13-21
    Nürnberg D., Bijma J., Hemleben C. (1996) Erratum: Assessing the reliability of magnesium in foraminiferal calcite as a proxy for water mass temperatures. Geochimica et Cosmochimica Acta, 60, 2483-2484
    Nurnburg D., Bijrna J., hemleben C. (1996) Assessing the reliability of magnesium in foraminiferal calcite as a proxy for water mass temperatures. Geochimica et Cosmochimica Acta, 60, 803-814
    O’Neil J. R. (1986) Theoretic and experimental aspects of isotopic fractionation. Rev Mineral, 16, 1-40
    Oomori T., Kaneshima H., Maezato Y., Kitano Y. (1987) Distribution coefficient of Mg2+ ions between calcite and solution at 10-50℃. Marine Chemistry, 20, 327-336
    Parker S. C., Titiloye J. O., Watson G. W. (1993) Molecular modeling of carbonate minerals-studies of growth and morphology. Philos. Trans. R. Soc. London, Ser. A344, 37-48
    Patterson W. P., Smith G. R., and Lohmann K. C. (1993) Continental paleothermometry and seasonality using the isotopic composition of aragonite otoliths of freshwater fishes. In Climate Change in Continental Isotopic Records (eds. P. K. Swart, C. K. Lohmann, J. Mckenzie, and S. Savin), Geophys. Monogr. Ser 78, 191-202
    Plummer L. N. and Busenberg E. (1982) The solubilities of calcite, aragonite and vaterite in CO2-H2O solutions between 0 and 90℃, and an evaluation of the aqueous model for the system CaCO3-CO2-H2O, Geochimica et Cosmochimica Acta, 46, 1101
    Rimstidt J. D., Balog A., Webb J. (1998) Distribution of trace elements between carbonate minerals and aqueous solutions. Geochim. Cosmochim. Acta, 62, 1851-1863
    Rosenthal Y., Boyle E. A., and Slowey N. (1997) Temperature control on the incorporation of magnesium, strontium, fluorine, and cadmium into benthic foraminiferal shells from Little Bahama Bank: Prospects for thermocline paleoceanography. Geochim. Cosmochim. Acta 61, 3633-3643
    Russell A. D., Hönisch B., Spero H. J., Lea D. W. (2004) Effects of seawater carbonate ion concentration and temperature on shell U, Mg, and Sr in cultured planktonic foraminifera. Geochimica et Cosmochimica Acta, 68, 4347-4361
    Sayah M., Youdri L. (2002) Etude de la resonance paramagnetique electonique (RPE) de I’ion CO3- distordu et associe a I’impurete lithium dans la calcite synthetique, Ann. Chim. Sci. Mat, 27, 51-59
    Shen C. C., Lee T., Chen C. Y., Wang C H., Dai C. F., Li L. A. (1996) The calibration of D[Sr/Ca] versus sea surface temperature relationship for Porites corals. Geochimica et Cosmochimica Acta, 60, 3849-3858
    Shen G. T. and Dunbar R. B. (1995) Environmental controls on uranium in reef corals. Geochim. Cosmochim. Acta 59, 2009-2024
    Shen J. S., You C. F. (2003) A 10-fold improvement in the precision of boron isotopic analysis by negative thermal ionization mass spectrometry. Anal. Chem. 75, 1972-1977
    Shiro Y. and Sakai H. (1972) Calculation of the reduced partition function ratios of α-, β-quartzes and calcite. Bull. Chem. Soc. Jpn. 45, 2355-2359
    Sinclair D., Kinsley L., McCulloch M. (1998) High resolution analysis of trace elements in corals by laser ablation ICP-MS, Geochim. Cosmochim. Acta 212, 1889-1901
    Sinclair D. J. (1999) High spatial-resolution analysis of trace elements n coral using laser ablation ICP-MS. PhD thesis, Australian National University.
    Sjoberg E. L. (1978) Kinetics and mechanism of calcite dissolution in aqueous solutions at low temperatures. Stockholm Contrib. Geol, 32, 1-96
    Söhnel O. and Garside J. (1992) Precipitation: Basic principles and Industrial Applications, Butterworth-Heinemann, oxford.
    Spivack A. J., Edmond J. M. (1987) Determination of B isotopic ratios by thermal ionization mass spectrometry of the dicesium metaborate cation. Anal. Chem. 58, 31-35
    Stumm W. and Morgan J. J. (1996) Aquatic Chemistry: Chemical Equilibria and Rates in Natural Waters 3rd. Wiley. Interscience
    Tarutani T., Clayton R. N., Mayade T. K. (1969) The effect of polymorphism and magnesium substitution on oxygen isotope fractionation between calcium carbonate and water. Geochimica et Cosmochimica Acta., 33, 987-996
    Tesoriero A. J. and Pankow J. F. (1996) Solid solution partitioning o f Sr2+, Ba2+, and Cd2+ to calcite. Geochim. Cosmochim. Acta 60, 1053-1063
    Thorrold S. R., Campana S. E., Jones C. M., and Swart P. K. (1997) Factors determining δ13C and δ18O fractionation in aragonitic otoliths of marine fish. Geochim. Cosmochim. Acta 61, 2909-2919
    Titiloye J. O., Parker S. C., Mann S. (1993) Atomistic simulation of calcite surfaces and the influence of growth additives on their morphology. J. Cryst. Growth, 84, 533-545
    Urey H. C. (1947) The thermodynamic properties of isotopic substances. J. Chem. Soc. (London) 562-581
    Veizer, J. (1983) Trace element and stable isotopes in sedimentary carbonates, in Reeder, R. J., ed., Carbonates: mineralogy and chemistry: Review in Mineralogy, 11, 265-299
    Vengosh A., Kolodny Y., Starinsky A., Chivas A. R., McCulloch M. T. (1991) Coprecipitation and isotopic fractionation of boron in modern biogenic carbonates. Geochim. Cosmochim. Acta 55, 2901-2910
    Walter L. M. (1986) Relative efficiency of carbonate dissolution and precipitation during diagenesis: a progress report on the role of solution chemistry. In: Gautier D. L. ed Roles of Organic Matter in Sediment Diagenesis. Soc. Econ. Paleontol Mineral Spec. Publ, 38, 1-11
    Walter L. M. and Hanor J. S. (1979) Orthophosphate: effect on the relative stability of aragonite and magnesian calcite during early diagenesis. Jour. Sediment. Petrol. 49, 937-944
    Walter L. M. and Morse J. W. (1984) Magnesian calcite atabilities: A reevaluation. Geochim. Cosmochim. Acta, 48, 1059-1069
    Yoshioka S. (1987) Transformation of aragonite to calcite in aqueous solutions. Jour. Earth Sci Nagoya Univ., 35, 147-66
    You C. F., Spivack A. J., Smith J. H., and Gieskes J. M. (1993) Mobilization of boron in convergent margins implication for boron geochemical cycle. Geology, 21, 207-210
    Zheng Y. F. (1999) Oxygen isotope fractionation in carbonate and sulfate minerals. Geochem. J. 33, 109-126
    Zhong S. J. and Mucci A. (1989) Calcite and aragonite precipitation from seawater solution of various salinities: Precipitation rates and overgrowth compositions. Chemical Geology, 78, 283-299
    Zhong S. J. and Mucci A. (1993) Calcite precipitation in seawater using a constant addition technique: A new overall reation kinetic expression. Geochim. Cosmochim. Acta, 57, 1409-1417
    Zhou G. T. and Zheng Y. F. (2001) Chemical synthesis of CaCO3 minerals at low temperatures and implication for mechanism of polymorphic transition. N. JB. Mineral. Abh. 176, 323-343
    Zhou G. T. and Zheng Y. F. (2002) Kinetic mechanism of oxygen isotope disequilibrium in precipitated witherite and aragonite at low temperatures: An experimental study. Geochim. Cosmochim. Acta 66, 63-71
    Zhou G. T. and Zheng Y. F. (2003) An experimental study of oxygen isotope fractionation between inorganically precipitated aragonite and water at low temperatures. Geochim. Cosmochim. Acta 67, 387-399

    下載圖示 校內:2007-07-07公開
    校外:2007-07-07公開
    QR CODE