簡易檢索 / 詳目顯示

研究生: 徐安
Shiu, An
論文名稱: 即時複合實驗於互制式減震系統效能驗證之應用
Real-time hybrid testing of interactive-type seismic protective devices
指導教授: 盧煉元
Lu, Lyan-Ywan
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 192
中文關鍵詞: 即時複合實驗互制式隔減震系統雙軸控制複合實驗振動台實驗慣性式隔減震
外文關鍵詞: real-time hybrid testing, interactive-type device, seismic protective device, hybrid testing with multi-axial control, vertical isolation, shaking table test
相關次數: 點閱:100下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年結合數值模擬與實體測試之先進複合實驗技術(hybrid testing),是地震工程實驗研究中方興未艾的發展領域,因其具有減少測試空間與成本之優點,尤其特別適合用以測試先進的隔減震元件等,可提供開發者進行多元且精確之實驗模擬工具。而另一方面根據近年之震災勘災報告顯示,垂直震波易造成重要建物內設備之碰撞而損壞。為保護建物內設備較有效的方式為採用隔震技術,然而常見之隔震系統多為水平向隔震,具垂直向隔震能力之系統相對稀少,此乃因為垂直隔震施作上之困難。垂直隔震系統於靜態時需有足夠勁度以克服受隔震物體之自重;動態時卻必須具有足夠柔度以拉長隔震週期,此動態與靜態時勁度需求有所衝突。為克服上述困難,本文乃提出互制式垂直隔震系統(Inertia-type Vertical Isolation System,簡稱為 IVIS)之構想,並以即時複合實驗技術(real-time hybrid testing,RTHT)評估其減震效能。IVIS主要由一傳統垂直隔震系統外加一配重塊及油壓連桿所組成。於油壓連桿之二端分別裝置受保護之設備及一配重塊,使IVIS系統於靜態時具有較高之等效勁度,以減少靜態沉陷量;並於動態時利用配重端的慣性與設備端產生互制效果以拉長其等效隔震週期,並可避免隔震系統於低頻震波作用下產生共振反應。此外,IVIS並能利用液壓管中液體之黏滯性以消散部分震波能量,達到有效降低設備垂直加速度及隔震位移量之目的。
    為測試單軸與雙軸控制模式下即時複合實驗方法應用於IVIS之可行性,本文先推導IVIS各子結構之運動方程式,並以子結構數值模擬方法,成功的模擬單軸與雙軸控制下即時複合實驗之反應。更於單軸位移控制模式下,成功的驗證IVIS即時複合實驗的可行性與準確性。同時,藉由改變IVIS數值子結構系統之參數,更進一步進行IVIS最佳化設計參數之實驗研究。RTHT之實驗結果顯示,當IVIS之配重質量比越大時,IVIS的隔震位移越小,於低頻的近域震波作用下的抗共振效果亦較佳;然而IVIS於高頻震波作用下之最大隔震加速度反應易高於傳統隔震系統,但仍具減震效果,以上RTHT之實驗結果與理論分析結果十分一致,顯示即時複合實驗用於評估及測試IVIS的減震效能是可行的。

    In recent years, the method of real-time hybrid testing (RTHT) that combines numerical simulation and physical test has attracted large attention, because it is able to reduce experiment space and cost required by a large-scale seismic test. This test technique is particularly suitable for testing novel seismic isolation and mitigation devices, since it provides the developers a more accurate experimental tool. On the other hand, most of commonly used isolation systems are for horizontal isolation, and applications of vertical isolation systems (VISs) are relatively few. The reason is that because a VIS must be stiff enough to overcome the self-weight of the isolated object in its static state, and meanwhile for isolation efficiency it must be flexible enough to prolong the isolation period in dynamic state. Therefore, there is conflict of stiffness required in static and dynamic states. To overcome the above difficulty, the notion of an Inertia-type Vertical Isolation System (IVIS) is proposed in this study, and the RTHT was used to evaluate its isolation performance. The IVIS, which is composed of a traditional vertical isolation system, a counter-weight and a hydraulic link, has a high effective static stiffness and a low dynamic stiffness due to the existence of the counter-weight. The experimental result of RTHT with uniaxial displacement control mode demonstrates the feasibility and accuracy of the RTHT technology for evaluating the isolation performance of the IVIS.

    摘要 I EXTENDED ABSTRACT III 誌謝 XI 目錄 XIII 表目錄 XVI 圖目錄 XVII 第1章 前言 1 1.1 研究動機 1 1.2 文獻回顧與探討 2 1.2.1有關隔震技術發展之文獻 2 1.2.2有關探討即時複合實驗相關問題之文獻 4 1.2.3有關振動台即時複合實驗之文獻 7 1.2.4有關液壓式元件之即時複合實驗文獻 10 1.3 研究目的與架構 11 第2章 振動台複合實驗於結構隔減震技術之應用 13 2.1 振動台複合實驗原理 14 2.2 振動台複合實驗之數值模擬驗證方法 21 2.3 振動台複合實驗於樓板隔震實驗之應用 21 2.3.1 實驗方法 21 2.3.2 實驗用之主結構及隔震樓板參數 23 2.3.3 樓板隔震實驗之複合實驗驗證 23 2.3.4 樓板隔震減震效能比較 24 2.4 振動台複合實驗於調諧質量阻尼器(TMD)實驗之應用 24 2.4.1 實驗方法 24 2.4.2 TMD裝置於單自由度主結構之複合實驗驗證 25 2.4.3 TMD裝置於10層樓主結構之複合實驗驗證 25 2.4.4 TMD之減震效能比較 26 第3章 互制式垂直隔震系統(IVIS)之分析理論 57 3.1 運動方程式推導 58 3.1.1 以能量法推導運動方程式 58 3.1.2 以牛頓第二運動定律推導數學模型 60 3.2 數值分析方法 63 3.2.1 非線性摩擦力之模擬 63 第4章 單軸控制之IVIS即時複合實驗研究 67 4.1 實驗方法及組立 67 4.1.1 IVIS實驗組立 67 4.1.2實驗用之震波 68 4.1.3 IVIS油壓連桿元件參數識別 68 4.2 單軸位移控制之複合實驗 70 4.2.1 運動方程式推導 70 4.2.2 複合實驗之數值模擬驗證 72 4.2.3 複合實驗之實驗驗證 72 4.2.4 複合實驗不同參數減震效能探討 74 4.3 單軸力控制之複合實驗 75 4.3.1 運動方程式推導 75 4.3.2 複合實驗之數值模擬驗證 77 4.3.3 複合實驗之實驗驗證 78 第5章 雙軸控制之IVIS即時複合實驗研究 139 5.1 實驗方法及組立 139 5.1.1 IVIS實驗組立 139 5.1.2 實驗用之震波 140 5.1.3 IVIS油壓連桿元件參數識別結果驗證 140 5.2 雙軸位移-位移控制之複合實驗 141 5.2.1 運動方程式推導 141 5.2.2 複合實驗之數值模擬驗證 142 5.3 雙軸力-力控制之複合實驗 143 5.3.1 運動方程式推導 143 5.3.2 複合實驗之數值模擬驗證 144 5.3.3 複合實驗之實驗驗證 145 5.4 雙軸位移-力控制之複合實驗 146 5.4.1運動方程式推導 146 5.4.2複合實驗之數值模擬驗證 147 5.4.3複合實驗之實驗驗證 147 第6章 結論與建議 183 6.1 結論 183 6.2 建議 185 參考文獻 187

    1. Aly AM, Christenson R. (2014) “Fast hybrid testing of controlled smart dampers for nonlinear structures under earthquakes.” Arabian Journal for Science & Engineering. 39: 1573-1579.
    2. Araki Y, Asai T, Kimura K, Maezawa K, Masui T. (2013) “Nonlinear vibration isolator with adjustable restoring force.” Journal of Sound & Vibration. 332(23):6063-6077.
    3. Blakeborough A, Williams MS and Darby AP (2001) “The development of real-time substructure testing.” Philosophical Transactions of The Royal Society. 359(1786): 1869-1891.
    4. Bolien M, Iravani P and Du Bois JL. (2017) “Toward Robotic Pseudodynamic Testing for Hybrid Simulations of Air-to-Air Refueling.” IEEE/ASME Transactions on Mechatronics. 22(2):1004-1013.
    5. Bonnet PA, Williams MS and Blakeborough A. (2007) “Compensation of actuator dynamics in real-time hybrid tests.” Proceedings of the Institution of Mechanical Engineers Part I-Journal of Systems and Control Engineering. 221(I2):251-264.
    6. Chae Y, Ricles JM and Richard S. (2014) “Large-scale real-time hybrid simulation of a three-story steel frame building with magneto-rheological dampers.” Earthquake Engineering & Structural Dynamics 43:1915-1933
    7. Carrion JE, Spencer BF and Phillips BM. (2009) “Real-time hybrid testing of a semi-actively controlled structure with an MR damper.” American Control Conference. June 10-12. St. Louis, MO, USA.
    8. Chen PC, Tsai KC and Lin PY. (2014) “Real-time hybrid testing of a smart base isolation system.” Earthquake Engineering and Structural Dynamics. 43: 139-158
    9. Chen C, Ricles JM, Marullo TM and Mercan O. (2009) “Real-time hybrid testing using the unconditionally stable explicit CR integration algorithm.” Earthquake Engineering & Structural Dynamics. 38: 23-44.
    10. Chen C and Ricles JM. (2012a) “Analysis of implicit HHT-α integration algorithm for real-time hybrid simulation.” Earthquake Engineering & Structural Dynamics. 41: 1021-1041.
    11. Chen Z, Ding Y, Shia Y and Lia Z (2019) “A vertical isolation device with variable stiffness for long-span spatial structures” Soil Dynamics and Earthquake Engineering. 543–558.
    12. Christenson R, Lin YZ, Emmons A and Bass B. (2008) “Large-scale experimental verification of semiactive control through real-time hybrid simulation.” Journal of Structural Engineering-Asce. 134: 522-534.
    13. Chu SY, Lu LY, Yeh SW, Chia PY and Ning WC (2018) “Real-time hybrid testing of a structure with a piezoelectric friction controllable mass damper by using a shake table.” Structural Control and Health Monitoring. 25(3):e2124.
    14. Darby AP, Blakeborough A and Williams MS. (1999) “Real-time substructure tests using hydraulic actuator.” Journal of Engineering Mechanics-ASCE. 125: 1133-1139.
    15. Darby AP, Blakeborough A and Williams MS (2001) “Improved control algorithm for realtime substructure testing.” Earthquake Engineering & Structural Dynamics. 30: 431-448.
    16. Dermitzakis SN and Mahin SA. “Development of substructuring techniques for on-linecomputer controlled seismic performance testing.” in Report UCB/EERC - 85/04.1985, Earthquake Engineering Research Center, University of California, Berkeley.
    17. Dong B, Sause R and Ricles JM (2015). “Accurate real-time hybrid earthquake simulations on large-scale MDOF steel structure with nonlinear viscous dampers.” Earthquake Engineering & Structural Dynamics. 44:2035-2055
    18. Eatherton MR, and Hajjar JF (2014) “Hybrid simulation testing of a self-centering rocking steel braced frame system.” Earthquake Engineering & Structural Dynamics. 43:1725-1742
    19. Enokida R, Stoten D and Kajiwara K. (2016) “Application of the nonlinear substructuring control method to nonlinear 2-degree-of-freedom systems.” Journal of Physics: Conference Series. 744(1):12-39.
    20. Eltahawy W, Ryan K, Cesmeci S and Gordaninejad F. (2019) “Displacement/velocity- based control of a liquid spring-MR damper for vertical isolation” Structural Control and Health Monitoring. 26:e2363.
    21. Fujita T. (1985) “Earthquake isolation technology for industrial facilities- research, development and applications in Japan” Bulletin of the New Zealand National Society for Earthquake Engineering. 18(3):224-249.
    22. Gao X, Castaneda NE, Dyke SJ, Xi S, Gill CD, Lu C and Ohtori Y. (2011) “Experimental validation of a scaled instrument for real-time hybrid testing.” American Control Conference. June 29-July 01.San Francisco, CA, USA.
    23. Gao X, Castaneda N and Dyke SJ. (2013) “Real time hybrid simulation: from dynamic system, motion control to experimental error.” Earthquake Engineering & Structural Dynamics. 42(6):815-832.
    24. Gomez D, Dyke SJ, Maghareh. (2017) “A Hybrid simulation: empowering earthquake engineering experimentation.” Proceedings of 16th World Conference on Earthquake Engineering. January 9-13. Santiago, Chile.
    25. Günay S, Mosalam KM. (2014) “Seismic performance evaluation of high voltage disconnect switches using real-time hybrid simulation. (II)” Earthquake Engineering & Structural Dynamics. 43:1205–1222.
    26. Hakuno H, Shidawara M., and Hara T.(1969) ”Dynamic destructive test of a cantilever beam controlled by an analog-computer.” Transactions Japan Society of Engineers. 1969(171):1-9.
    27. Hamidi M and El Naggar MH. (2007) “On the performance of SCF in seismic isolation of the interior equipment of buildings.” Earthquake Engineering and Structural Dynamics. 36(11):1581-1604.
    28. Hochrainer MJ and Ziegler F (2006) “Control of tall building vibrations by sealed tuned liquid column dampers.” Structural Control and Health Monitoring. 13:980-1002.
    29. Horiuchi T, Inoue M, Konno T and Namita Y (1999) “Real-time hybrid experimental system with actuator delay compensation and its application to a piping system with energy absorber” Earthquake Engineering & Structural Dynamics. 28(10):1121-1141.
    30. Horiuchi T, Inoue M and Konno T. (2000) “Development of a real-time hybrid experimental system using a shaking table.” The 12th World Conference on Earthquake Engineering. January 30- February 4. Auckland, New Zealand.
    31. Hung CC and Chen YS. (2011) “Numerical characteristics of the full operator hybrid simulation method.” Earthquake Engineering and Engineering Vibration. 10(3):453.
    32. IBC (2003) International Building Codes, International Code Council, Falls Church, Virginia.
    33. Iemura H, Igarashai A and Takahashi Y. (1999) “Substructured hybrid techniques for actuator loading and shake table tests.” The First Inetrnational Conference on Advances in Structural Engineering and Mechanics. September17-21.Seoul, South Korea.
    34. Igarashi A, Iemura H and Suwa T. (2000) “Development of substructured shaking table test method” Proceedings of the 12th World Conference on Earthquake Engineering. Auckland, New Zealand. January 30-February 4.
    35. Igarashi A, Iemura H, Tanaka H and Tsuruta D. (2004) “Experimental simulation of coupled response of structural systems using the substructured hybrid shake table test method.” The 13th World Conference on Earthquake Engineering. Vancouver, Canada. August 1-6.
    36. Kammula V, Erochko J, Kwon OS, Christopoulos C. (2014) “Application of hybrid-simulation to fragility assessment of the telescoping self-centering energy dissipative bracing system.” Earthquake Engineering & Structural Dynamics. 43:811-830.
    37. Kimura K, Araki Y, Asai T, Yoshida N, Masui T, Omori T, Kainuma R and Uetani K. (2014) “Vertical Seismic Isolation with Superelastic Cu-Al-Mn Alloy Bars.” The Sixth World Conference on Structural Control and Monitoring. Barcelona, Spain. July 15-17.
    38. Kitamura S, Okamura S, Takahashi K. (2005) “Experimental study on vertical component seismic isolation system with coned disk spring.” ASME Pressure Vessels and Piping Division Conference. Denver, CO, USA. July 17-21.
    39. Lamarche CP, Bonelli A, Bursi OS and Tremblay R. (2009) “A Rosenbrock-W method for real-time dynamic substructuring and pseudo-dynamic testing.” Earthquake Engineering and Structural Dynamics. 38: 1071-1092.
    40. Lin YZ, Christenson R. (2011) “Real-time hybrid test validation of a MR damper controlled building with shake table tests.” Advances in Structural Engineering. 14:79-92.
    41. Lee SK, Park EC, Min KW and Park JH. (2007) “Real-time substructuring technique for the shaking table test of upper substructures.” Engineering Structures. 29(9):2219-2232.
    42. Lee SK, Park EC, Min KW, Lee SH, Chung L and Park JH. (2007) “Real-time hybrid shaking table testing method for the performance evaluation of a tuned liquid damper controlling seismic response of building structures.” Journal of Sound and Vibration. 302(3): 596-612.
    43. Lu LY, Lin GL, Lin CY. (2011a) “Experimental verification of a piezoelectric smart isolation system” Structural Control and Health Monitoring, 18(8):869-889.
    44. Lu LY, Chu SY, Yeh SW, Peng CH. (2011b) “Modeling and experimental verification of a variable-stiffness isolation system using leverage mechanism.” Journal of Vibration and Control. 17(12):1869-1885.
    45. Lu LY, Lee TY, Juang SY, Yeh SW. (2013) “Polynomial friction pendulum isolators (PFPIs) for building floor isolation: an experimental and theoretical study.” Engineering Structures. 56: 970-982.
    46. Lu LY, Chen PR and Pong KW. (2016) “Theory and experiment of an vertical isolation system for seismic protection of equipment.” Journal of Sound and Vibration. 366: 44-61.
    47. Lee D and Constantinou MC. (2018) “Combined horizontal–vertical seismic isolation system for high-voltage–power transformers: development, testing and validation.” Bulletin of Earthquake Engineering. 16:4273-4296.
    48. Maghareh A, Waldbjørn JP, Dyke SJ, Prakash A and Ozdagli AI. (2016) “Adaptive multi‐rate interface: development and experimental verification for real‐time hybrid simulation.” Earthquake Engineering & Structural Dynamics. 45(9): 1411-1425.
    49. Mahin SA, Shing PS, Thewalt CR and Hanson RD (1989) “Pseudodynamic Test Method-Current Status and Future Directions.” Journal of Engineering Mechanics. 115(8): 2113 - 2128.
    50. McCrum DP, Williams MS. (2016) “An overview of seismic hybrid testing of engineering structures.” Engineering Structures. 118(1):240-261.
    51. Mosalam KM and Günay S. (2014) “Seismic performance evaluation of high voltage disconnect switches using real-time hybrid simulation (1).” Earthquake Engineering & Structural Dynamics. 43:1223-1237.
    52. Nakashima M, Kato H and Takaoka E (1992) “Development of real-time pseudo dynamic testing.” Earthquake Engineering & Structural Dynamics. 21(1): 79-92.
    53. Nakashima M and Masaoka N (1999) “Real-time on-line test for MDOF systems.” Earthquake Engineering & Structural Dynamics. 28(4): 393-420.
    54. Neild SA, Stoten DP, Drury D and Wagg DJ. (2005) “Control issues relating to real-time substructuring experiments using a shaking table.” Earthquake Engineering & Structural Dynamics. 34(9): 1171-1192.
    55. Ozcelik R, Binici B and Kurc O. (2013) “Pseudo dynamic test of a deficient reinforced concrete fram upgraded with internal steel frames.” Earthquake Engineering & Structural Dynamics. 42:763-778.
    56. Oinam RM and Sahoo DR (2018) “Pseudo-dynamic testing of RC frame with soft-story strengthened using metallic dampers.” The Eleventh U.S. National Conference on Earthquake Engineering. June 25-29. Los Angeles, California.
    57. Park E, Min KW, Lee SK, Lee SH, Lee HJ, Moon SJ and Jung HJ. (2010) “Real-time hybrid test on a semi-actively controlled building structure equipped with full-scale MR dampers.” Journal of Intelligent Material Systems and Structures. 21:1831-1850.
    58. Reinhorn AM, Bruneau M, Chu SY, Shao X and Pitman MC. (2003) “Large Scale Real Time Dynamic Hybrid Testing Technique-Shake Tables Substructure Testing.” ASCE/SEI Structures Congress and Exposition. Seattle, WA. May 29-31.
    59. Schellenberg AH, Tracy C. Becker and Stephen A. Mahin (2017) “Hybrid shake table testing method: Theory, implementation and application to midlevel isolation.” Structural Control Health Monitoring. 24:e1915.
    60. Shao X, Reinhorn AM and Sivaselvan MV. (2011) “Real-time hybrid simulation using shake tables and dynamic actuators.” Journal of Structural Engineering, ASCE. 137(7):748-760.
    61. Shing PB, Wei Z, Jung R and Stauffer E. (2004) “NEES fast hybrid test system at the University of Colorado.” Proceedings of the 13th World Conference in Earthquake Engineering. Vancouver, Canada. August 1-6.
    62. Shi P, Wu B, Billie F. Spencer Jr, Phillips BM. and Chang CM (2016) “Real-time hybrid testing with equivalent force control method incorporating Kalman filter.” Structural Control Health Monitoring. 23:735-748.
    63. Stoten DP, Tu JY and Li G. (2009) “Synthesis and control of generalised dynamically substructured systems.” Proceedings of IMechE, Part I: Journal of Systems and Control Engineering. 223: 371-392.
    64. Stoten DP. (2017) “A comparative study and unification of two methods for controlling dynamically substructured systems.” Earthquake Engineering & Structural Dynamics. 46(2):317-339.
    65. Takanashi K (1987) “Japanese activities on lon-line testing.” Journal of Engineering Mechanics, 113(7): 1014 -1032.
    66. Tanaka M, Naoaki T, Jun-ichi Y, Ken-ichi A, Akihior K, Munehiro K, Sabro M and Takao E. (1989) “Development of earthquake and microtremor isolation floor system utilizing air springs and laminated rubber bearings” IHI Engineering Review, 22(2): 47-52.
    67. Tsuji C, Tsuji M. (2014) “Non-linear multiply Isolated Building for long period earthquake motions.” Summaries of technical papers of annual meeting. 2014:643-644.
    68. Tu JY. (2010) The adaptive control of generalised dynamically substructured systems. University of Bristol, PhD Thesis.
    69. Tu JY (2013) “Development of numerical-substructure-based and output-based substructuring controllers.” Structural Control and Health Monitoring. 20(6): 918-936.
    70. Tu JY and Jiang JY (2013) “Substructurability and exact synchronisation analysis.” Structural Control and Health Monitoring. 20(12): 1410-1423.
    71. Tu JY, Yang HT, Lin PY and Chen PC. (2013) “Dynamics, control and real-time issues related to substructuring techniques: application to the testing of isolated structure systems.” Proceedings of the Institution of Mechanical Engineers Part I-Journal of Systems and Control Engineering. 227(6): 507-522.
    72. Tu JY, Lin PY, Stoten DP and Li G. (2010) “Testing of dynamically substructured, base-isolated systems using adaptive control techniques.” Earthquake Engineering & Structural Dynamics. 39(6): 661-681.
    73. Wamg W, Wang SJ, Yang CY, Nie X, Mo YL, Chang KC, Tang Y, and Robert K. (2018) “Seismic isolation of small modular reactors using metamaterials.” AIP Advances 8, 045307.
    74. Wang SJ, Yang YH, Lin FR, Jeng JW and Hwang JS (2016) “Experimental study on seismic performance of mechanical electrical equipment with vibration isolation systems.” Journal of Earthquake Engineering. 21(3):439-460.
    75. Williams MS and Blakeborough A. (2001) “Laboratory testing of structures under dynamic loads: an introductory review.” Philosophical Transactions of The Royal Society A Mathematical Physical and Engineering Sciences. 359(1786):1651-1669.
    76. Wu B, Xu G, Wang Q and Williams MS. (2006) “Operator-splitting method for real-time substructure testing.” Earthquake Engineering & Structural Dynamics. 35: 293-314.
    77. Wu B, Wang Q, Shing BP and Ou J. (2007) “Equivalent force control method for generalized real-time substructure testing with implicit integration.” Earthquake Engineering & Structural Dynamics. 36: 1127-1149.
    78. Xu ZD, Tu Q and Guo YF. (2012) “Experimental study on vertical performance of multidimensional earthquake isolation and mitigation devices for long-span reticulated structures.” Journal of Vibration and Control. 18(13): 1971-1985.
    79. Xu W, Du D, Wang S, Liu W and Li W. (2019) “Shaking table tests on the multi-dimensional seismic response of long-span grid structure with base-isolation.” Engineering Structures. 201(15): 0141-0296.
    80. Yamaguchi T and Stoten D. (2016) “Synthesised H∞/μ control design for dynamically substructured systems.” Journal of Physics Conference Series.744(1):012205.
    81. Yang JN and Agrawal AK. (2000), “Protective system for high-technology facilities against micro-vibration and earthquake” Structural Engineering and Mechanics. 10(6):561-575.
    82. Zhang Z, Staino A, Basu B, Nielsen SRK. (2016) “Performance evaluation of full-scale tuned liquid dampers (TLDs) for vibration control of large wind turbines using real-time hybrid testing.” Engineering Structures. 126:417-431.
    83. Zhang R, Phillips BM, Taniguchi S, Ikenaga M, Ikago K. (2016) “Shake table real-time hybrid simulation techniques for performance evaluation of buildings with inter‐story isolation.” Structural Control and Health Monitoring. 24(10): e1971.
    84. Zeng H, Zhao J and Wang K (2013) “Design and theoretical studies of pulsatile hydraulic vertical isolation device.” Advanced Materials Research. 619:508-511.
    85. Zhu F, Wang JT, Jin F, Lu LQ, Gui Y, Zhou MX. (2016) “Real-time hybrid simulation of the size effect of tuned liquid dampers.” Structural Control and Health Monitoring. 24(9): e1962.
    86. 建築物耐震設計規範(2005),中華民國內政部營建署,民國九十四年七月。
    87. 葉士瑋 (2017) “具摩擦特性振動控制系統即時複合實驗之振動台實驗驗證”,國立成功大學土木工程研究所,博士論文。指導教授:朱世禹、盧煉元。
    88. 許敬昀 (2014) “摩擦型調諧阻尼器系統混和實驗驗證”,國立成功大學土木工程研究所,碩士論文。指導教授:朱世禹。
    89. 張喬崴 (2017) “應用遞迴最小平方識別法進行變勁度系統振動台與即時複合試驗之即時參數識別”,國立成功大學土木工程研究所,碩士論文。指導教授:朱世禹。
    90. 甯威鈞 (2015) “半主動壓電式摩擦型調諧質量阻尼器系統混合實驗驗證”,國立成功大學土木工程研究所,碩士論文。指導教授:朱世禹。
    91. 呂仲岳 (2017) “應用即時複合實驗進行配置PFCMD 多自由度系統控制參數之最佳化探討”,國立成功大學土木工程研究所,碩士論文。指導教授:朱世禹。
    92. 賈博宇 (2016) “振動台效能對於PFCMD即時複合實驗之影響探討”,國立成功大學土木工程研究所,碩士論文。指導教授:朱世禹。
    93. 林煒松 (2018) “採用不同振動台進行即時複合實驗之效能探討”,國立成功大學土木工程研究所,碩士論文。指導教授:朱世禹。
    94. 黃語彤 (2018) “高樓配置半主動模糊控制LSCMD 之即時複合實驗驗證”,國立成功大學土木工程研究所,碩士論文。指導教授:朱世禹。
    95. 高崇銘 (2017) “配置LSCMD多自由度系統採用最小能量控制律之即時複合試驗”,國立成功大學土木工程研究所,碩士論文。指導教授:朱世禹。
    96. 朱凱業 (2013) “多項式變曲率滑動支承之混合實驗”,國立成功大學土木工程研究所,碩士論文。指導教授:朱世禹。
    97. 莊書賢 (2002) “改良式調諧液柱阻尼器對大型浮式結構物之動力減振研究”,國立中山大學海洋環境及工程學系,碩士論文,十二月。指導教授:李賢華。
    98. 薛嘉傑 (2014) “垂直及水平地震力作用下框架式結構振動效應對設備反應之影響”,國立高雄第一科技大學營建工程系,碩士論文,一月。指導教授:盧煉元。
    99. 陳培榮 (2014) “慣性式垂直向設備隔震系統研究”,科技部補助大專學生研究計畫研究成果報告書,十二月。指導教授:盧煉元。
    100. 彭冠文 (2015) “建物中設備水平與垂直雙向隔震技術之實驗與理論研究”,國立高雄第一科技大學營建工程系,碩士論文,六月。指導教授:盧煉元。
    101. 黃柏鈞 (2019) “Duffing-like模型之進階參數識別曁半主動控制應用”,國立清華大學動力機械工程研究所,碩士論文。指導教授:宋震國、杜佳穎。
    102. 楊凱驛 (2019) “動態次結構系統之可次結構性分析與驗證”,國立清華大學動力機械工程研究所,碩士論文。指導教授:宋震國、杜佳穎。
    103. 楊永瀚 (2019) “液壓式垂直向設備隔震系統之應用研究”,科技部補助大專學生研究計畫研究成果報告書,三月,指導教授:盧煉元。

    下載圖示 校內:2024-07-01公開
    校外:2024-07-01公開
    QR CODE