| 研究生: |
蕭順榮 Hsiao, Shuan- Rung |
|---|---|
| 論文名稱: |
蝴蝶蘭miR156及miR172功能性之研究 The functional study of miR156 and miR172 in Phalaenopsis aphrodite subsp. formosana |
| 指導教授: |
詹明才
Chan, Ming-Tsair |
| 學位類別: |
碩士 Master |
| 系所名稱: |
生物科學與科技學院 - 熱帶植物科學研究所 Institute of Tropical Plant Sciences |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 80 |
| 中文關鍵詞: | 生長時期轉換 、開花時期調控 |
| 外文關鍵詞: | microRNAs, miR156, miR172, phase transitions |
| 相關次數: | 點閱:118 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
MicroRNAs (miRNAs) 是一類長約21個核苷酸的單鏈小分子RNA,lin-4是最早於線蟲 (Caenorhabditis elegans) 中首次發現的miRNA,目前miRNAs在許多生物中已被發現。miRNAs和目標基因結合後經由轉錄抑制或mRNA降解等方式調控基因表現。植物體中,miRNAs主要參與生長發育、荷爾蒙和逆境等調控。阿拉伯芥中已知miR156和miR172兩個 miRNAs參與在生長時期轉換和開花時期調控,從營養生長進入生殖生長時期,miR156表現逐漸下降,其目標基因SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (SPL)因而增加表現,SPL進而促進miR172表現,其目標基因APETALA2 (AP2) 和AP2-like 基因, TARGET OF EAT 1 (TOE1), TOE2受到抑制因而誘導開花。本實驗以白花蝴蝶蘭 (Phalaenopsis aphrodite subsp. formosana) 為材料,白花蝴蝶蘭為台灣重要原生種具有多花色、獨特花型且具高觀賞價值,但因其生長週期長,所以本篇藉由探討microRNAs (miR156和miR172) 在白花蝴蝶蘭開花調控所扮演的角色,未來希望能縮短蝴蝶蘭開花所需時間。我們利用小分子RNA定序技術並配合生物資訊分析和其他物種已知miRNAs比對後得知蝴蝶蘭有22個miRNA families,當中包含miR156 和miR172。並利用小分子RNA北方點墨法證實 miR156 和miR172確實存在蝴蝶蘭,且miR156在葉片表現高於梗和花苞,miR172則是梗和花苞表現較高。進一步由實驗室所建立的蝴蝶蘭transcriptome databaes中找尋可能的目標基因,PaSPL和PaAP2 分別具有可被miR156 和miR172所結合之位置且皆會被cleavage。其中PaSPL於RNA層次上在不同組織的表現和 miR156 互相互補,推測miR156具有調控PaSPL的功能 ; PaAP2在RNA層次之表現上並沒有因miR172表現低而增加。本實驗結果顯示蝴蝶蘭具有植物間高保守性的miRNAs且存在經由miRNAs所調控的開花路徑。
MicroRNAs (miRNAs) are ~21-nucleotide noncoding RNAs that have been identified in various organisms. In plants, miRNAs are mostly involved in the regulation of important growth and developmental processes such as leaf and root development, phase transitions, and flowering. Recent studies explore two temporally expressed miRNAs in Arabidopsis, miR156 and miR172 play important roles in regulation of vegetative phase change and flowering time regulation. From juvenile-to-adult transition, the transcription of SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (SPL) accumulation depend on the decrease of miR156 with time, and SPL genes promote miR172 transcript which then repress the APETALA2 (AP2), and AP2-like genes、TARGET OF EAT 1 (TOE1)、TOE2 to induce flowering. In this study, we used Phalaenopsis aphrodite subsp. formosana as material. To exam the possibility of controlling miR156 and miR172 expression in this long life cycle plant to accelerate the flowering time, we perform small RNA sequencing analysis and combining bioinformatics, we discovered 22 conserved miRNA families, and identified miR156 and miR172 othologs from Phalaenopsis orchid. Also, we discovered miR156 expresses higher in leaves than in stalks and in flower buds; however miR172 mainly expressed in stalks. These patterns are similar with those in Arabidopsis, imply us that we have possibility to overexpress miR172 to facilitate flowering in orchid the same way as Arabidopsis. Further, we identified the target genes of miR156 and miR172 from our orchid transcriptome databaes, PaSPL and PaAP2 which contain a miR156 and miR172 complementary site. The expression of PaSPL is abundant in stalks and flower buds that is complementary with expression of miR156. This suggests that miRNA-mediated flowering pathway exist in Phalaenopsis orchid.
1.Ambros, V., Bartel, B., Bartel, D.P., Burge, C.B., Carrington, J.C., Chen, X., Dreyfuss, G., Eddy, S.R., Griffiths-Jones, S., Marshall, M., Matzke, M., Ruvkun, G., and Tuschl, T. A uniform system for microRNA annotation. RNA 9, 277–279 (2003).
2.Achard, P., Herr, A., Baulcombe, D.C., and Harberd, N.P. Modulation of floral development by a gibberellin-regulated microRNA. Development 131, 3357–3365 (2004).
3.Aukerman, M.J., and Sakai, H. Regulation of flowering time and floral organ identity by a microRNA and its APETALA2-like target genes. Plant Cell 15, 2730–2741 (2003).
4.Bonnet, E., Van de Peer, Y., and Rouze, P. The small RNA world of plants. New Phytologist 171, 451–468 (2006).
5.Bollman, K.M., Aukerman, M.J., Park, M.Y., Hunter, C., Berardini, T.Z., and Poethig, R.S. HASTY the Arabidopsis ortholog of exportin 5/MSN5, regulates phase change and Morphogenesis. Development 130, 1493–1504 (2003).
6.Calin, G.A., Dumitru, C.D., Shimizu, M., Bichi, R., Zupo, S., Noch, E., Aldler, H., Rattan, S., Keating, M., Rai, K., Rassenti, L., Kipps, T., Negrini, M., Bullrich, F., and Croce, C.M. Frequent deletions and down-regulation of microRNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proceedings of the National Academy of Sciences 99, 15524–15529 (2002).
7.Chen, X. A microRNA as a translational repressor of APETALA2 in Arabidopsis flower development. Science 303, 2022–2025 (2004).
8.Chen, X., Li, Q., Wang, J., Guo, X., Jiang, X., Ren, Z., Weng, C., Sun, G., Wang, X., Liu, Y., Ma, L., Chen, J.Y., Wang, J., Zen, K., Zhang, J., and Zhang, C.Y.Identification and characterization of novel amphioxus microRNAs by Solexa sequencing. Genome Biology 10, R78 (2009).
9.Chiou, T.J., Aung, K., Lin. S.I., Wu, C.C., Chiang, S.F., and Su, C.L. Regulation of phosphate homeostasis by microRNA in Arabidopsis. Plant Cell 18, 412–421 (2006).
10.Cribb, P., and Govaerts, R. Just how many orchids are there? In: Raynal-Roques A, Roguenant A, Prat D, (eds). Proceedings of the 18th World Orchid Conference. Dijon, France, 161–172 (2005).
11.Danyluk, J., Kane, N.A., Breton, G., Limin, A.E., Fowler, D.B., and Sarhan, F. TaVRT-1, a putative transcription factor associated with vegetative to reproductive transition in cereals. Plant Physiology 132, 1849-1860 (2003).
12.Dennis, E.S. The FLF MADS box gene: a repressor of flowering in Arabidopsis regulated by vernalization and methylation. Plant Cell 11, 445–458 (1999).
13.Gendall, A.R., Levy, Y.Y., Wilson, A., and Dean, C. The VERNALIZATION 2 gene mediates the epigenetic regulation of vernalization in Arabidopsis. Cell 107, 525-535 (2001).
14.German, M.A., Luo, S., Schroth, G., Meyers, B.C., and Green, P.J. Construction of Parallel Analysis of RNA Ends (PARE) libraries for the study of cleaved miRNA targets and the RNA degradome. Nature Protocols 4, 356-362 (2009).
15.Guo, H.S., Xie, Q., Fei, J.F., and Chua, N.H. MicroRNA directs mRNA cleavage of the transcription factor NAC1 to downregulate auxin signals for Arabidopsis lateral root development. Plant Cell 17, 1376–1386 (2005).
16.Hagen, G., and Guilfoyle, T. Auxin-responsive gene expression: genes, promoters, and regulatory factors. Plant Molecular Biology 49, 373-385 (2002).
17.He, Y. Control of the transition to flowering by chromatin modifications. Molecular Plant 2, 554-564 (2009).
18.Jamalkandi, S.A., and Masoudi-Nejad, A. Reconstruction of Arabidopsis thaliana fully integrated small RNA pathway. Functional and Integrative Genomics 9, 419-432 (2009).
19.Jiang, D., Gu, X., and He, Y. Establishment of the winter-annual growth habit via FRIGIDA-mediated histone methylation at FLOWERING LOCUS C in Arabidopsis. Plant Cell 21, 1733–1746 (2009).
20.Johnston, R.J., and Hobert, O. A microRNA controlling left/right neuronal asymmetry in Caenorhabditis elegans. Nature 426, 845–849 (2003).
21.Jung, J.H., Seo, Y.H., Seo, P.J., Reyes, J.L., Yun, J., Chua, N.H., and Park, C.M. The GIGANTEA-regulated microRNA172 mediates photoperiodic flowering independent of CONSTANS in Arabidopsis. Plant Cell 19, 2736-2748 (2007).
22.Kawashima, C.G., Yoshimoto, N., Maruyama-Nakashita, A., Tsuchiya, Y., Saito, K., Takahashi, H., and Dalmay, T. Sulphur starvation induces the expression of microRNA-395 and one of its target genes but in different cell types. Plant Journal 57, 313-321 (2009).
23.Klein, J., Saedler, H., and Huijser, P. A new family of DNA binding proteins includes putative transcriptional regulators of the Antirrhinum majus floral meristem identity gene SQUAMOSA. Molecular and General Genetics 250, 7-16 (1996).
24.Kurihara, Y., Takashi, Y., and Watanabe, Y. The interaction between DCL1 and HYL1 is important for efficient and precise processing of pri-miRNAin plant microRNA biogenesis. RNA 12, 206–212 (2006).
25.Lai, E.C., Tam, B., and Rubin, G.M. Pervasive regulation of Drosophila Notch target genes by GY-box-, Brd-box-, and K-box-class microRNAs. Genes and Development 19, 1067–1080 (2005).
26.Lee, R.C., Feinbaum, R.L., and Ambros, V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75, 843-854 (1993).
27.Lee, H., Yoo, S.J., Lee, J.H., Kim, W., Yoo, S.K., Fitzgerald, H., Carrington, J.C., and Ahn, J.H. Genetic framework for flowering-time regulation by ambient temperature-responsive miRNAs in Arabidopsis. Nucleic Acids Research 38, 3081–3093 (2010).
28.Lecellier, C.H., Dunoyer, P., Arar, K., Lehmann-Che, J., Eyquem, S., Himber, C., Saib, A., and Voinnet, O. A cellular microRNA mediates antiviral defense in human cells. Science 308, 557–560 (2005).
29.Levy, Y.Y., Mesnage, S., Mylne, J.S., Gendall, A.R., and Dean, C. Multiple roles of Arabidopsis VRN1 in vernalization and flowering time control. Science 297, 243-246 (2002).
30.Liu, Q., and Chen, Y.Q. A new mechanism in plant engineering: The potential roles of microRNAs in molecular breeding for crop improvement. Biotechnology Advances 28, 301-307 (2010).
31.Lobbes, D., Rallapalli, G., Schmidt, D.D., Martin, C., and Clarke, J. SERRATE: a new player on the plant microRNA scene. EMBO Report 7, 1052–1058 (2006).
32.Mallory, A.C., Bartel, D.P., and Bartel, B. MicroRNA-directed regulation of Arabidopsis AUXIN RESPONSE FACTOR17 is essential for proper development and modulates expression of early auxin response genes. Plant Cell 17, 1360–1375 (2005).
33.Mallory, A.C., and Vaucheret, H. Functions of microRNAs and related small RNAs in plants. Nature Genetics 38, S31 - S36 (2006).
34.Michaels, S.D., and Amasino, R.M. FLOWERING LOCUS C encodes a novel MADS domain protein that acts as a repressor of flowering. Plant Cell 11, 949–956 (1999).
35.Michael, M.Z., SM, O.C., van Holst Pellekaan, N.G., Young, G.P., and James, R.J. Reduced accumulation of specific microRNAs in colorectal neoplasia. Moleclar Cancer Research 1, 882–891 (2003).
36.Mlotshwa, S., Yang, Z., Kim, Y., and Chen, X. Floral patterning defects induced by Arabidopsis APETALA2 and microRNA172 expression in Nicotiana benthamiana. Plant Molecular Biology 61, 781–793 (2007).
37.Morin, R.D., Aksay, G., Dolgosheina, E., Ebhardt, H.A., Magrini, V., Mardis, E.R., Sahinalp, S.C., and Unrau, P.J. Comparative analysis of the small RNA transcriptomes of Pinus contorta and Oryza sativa. Genome Research 18, 571-84 (2008).
38.Navarro, L., Dunoyer, P., Jay, F., Arnold, B., Dharmasiri, N., Estelle, K., Voinnet, O., and Jones, J.D. A plant miRNA contributes to antibacterial resistance by repressing auxin signaling. Science 312, 436–439 (2006).
39.Okamuro, J.K., Caster, B., Villarroel, R., Montagu, M.N., and Jofuku, K.D. The AP2 domain of APETALA2 defines a large new family of DNA binding proteins in Arabidopsis. Proceedings of the National Academy of Sciences 94, 7076–7081 (1993).
40.Palatnik, J.F., Allen E, Wu. X., Schommer, C., and Schwab, R. Control of leaf morphogenesis by microRNAs. Nature 425, 257–263 (2003).
41.Pantaleo, V., Szittya, G., Moxon, S., Miozzi, L., Moulton, V., Dalmay, T., and Burgyan, J. Identification of grapevine microRNAs and their targets using high-throughput sequencing and degradome analysis. Plant Journal 62, 960–976 (2010).
42.Putterill, J. Flowering in time: genes controlling photoperiodic flowering in Arabidopsis. Philosophical Transactions of the Royal Society B: Biological Sciences 356, 1761–1767 (2001).
43.Quesada, V., Dean, C., and Simpson, G.G. Regulated RNA processing in the control of Arabidopsis flowering. International Journal of Developmental Biology 49, 773-780 (2005).
44.Rajagopalan, R., Vaucheret, H., Trejo, J., and Bartel, D.P. A diverse and evolutionarily fluid set of microRNAs in Arabidopsis thaliana. Genes and development 20, 3407-3425 (2006).
45.Rodriguez, R.E., Mecchia, M.A., Debernardi, J.M., Schommer, C., Weigel, D., and Palatnik, J.F. Control of cell proliferation in Arabidopsis thaliana by microRNA miR396. Development 137, 103-112 (2010).
46.Schwarz, S., Grande, A.V., Bujdoso, N., Saedler, H., and Huijser, P. The microRNA regulated SBP-box genes SPL9 and SPL15 control shoot maturation in Arabidopsis. Plant Molecular Biology 67, 183-195 (2008).
47.Sheldon, C.C., Burn, J.E., Perez, P.P., Metzger, J., Edwards, J.A., Peacock, W.J., and Johanson, U., West, J., Lister, C., Michaels, S., Amasino, R., and Dean, C. Molecular analysis of FRIGIDA, a major determinant of natural variation in Arabidopsis flowering time. Science 290, 344–347 (2000).
48.Shikata, M., Koyama, T., Mitsuda, N., and Ohme-Takagi, M. Arabidopsis SBP-Box genes SPL10, SPL11 and SPL2 control morphological change in association with shoot maturation in the reproductive phase. Plant Cell Physiology 50, 2133–2145 (2009).
49.Shukla, L.I., Chinnusamy V., and Sunkar, R. The role of microRNAs and other endogenous small RNAs in plant stress responses. Biochimica et Biophysica Acta 9, 743-748 (2008).
50.Sung, S., and Amasino, R.M. Vernalization in Arabidopsis thaliana is mediated by the PHD finger protein VIN3. Nature 427, 159-164 (2004).
51.Sunkar, R. and Zhu, J.K. Novel and stress-regulated microRNAs and other small RNAs from Arabidopsis. Plant Cell 16, 2001–2019 (2004).
52.Sunkar, R., Kapoor, A., and Zhu, J.K.Posttranscriptional induction of two cu/zn superoxidedismutase genes in Arabidopsis is mediated by downregulation of miR398 and important for oxidative stress tolerance. Plant Cell 18, 2051–2065 (2006).
53.Sunkar, R., and Jagadeeswaran, G. In silico identification of conserved microRNAs in large number of diverse plant species. BMC Plant Biology 8, 37 (2008).
54.Szittya, G., Moxon, S., Santos, D.M., Jing, R., Fevereiro, M.P., Moulton, V., and Dalmay, T. High-throughput sequencing of Medicago truncatula short RNAs identifies eight new miRNA families. BMC Genomics 9, 593 (2008).
55.Tedder, P., Zubko, E., Westhead, D.R., and Meyer, P. Small RNA analysis in Petunia hybrida identifies unusual tissue-specific expression patterns of conserved miRNAs and of a 24mer RNA. RNA 15, 1012-1020 (2009).
56.Wang, J.W., Schwab, R., Czech, B., Mica, E., and Weigel, D. Dual effects of miR156-targeted SPL genes and CYP78A5/KLUH on plastochron length and organ size in Arabidopsis thaliana. Plant Cell 20, 1231-1243 (2008).
57.Wang, J.W., Wang, L.J., Mao, Y.B., Cai, W.J., Xue, H.W., and Chen, X.Y. Control of root cap formation by microRNA-targeted auxin response factors in Arabidopsis. Plant Cell 17, 2204–2216 (2005).
58.Wang, J.W., Czech, B., and Weigel, D. miR156-regulated SPL transcription factors define and endogenous flowering pathway in Arabidopsis thaliana. Cell 138, 738–749 (2009).
59.Wienholds, E., and Plasterk, R.H. MicroRNA function in animal development. FEBS Letters 579, 5911-5922 (2005).
60.Wu, G., and Poethig, R.S. Temporal regulation of shoot development in Arabidopsis thaliana by miR156 and its target SPL3. Development 133, 3539–3547 (2006).
61.Wu, G., Park, M.Y., Conway, S.R., Wang, J.W., Weigel, D., and Poethig, R.S. The sequential action of miR156 and miR172 regulates developmental timing in Arabidopsis. Cell 137, 750–759 (2009).
62.Wu, M.F., Tian, Q., and Reed, J.W. Arabidopsis microRNA167 controls patterns of ARF6 and ARF8 expression, and regulates both female and male reproduction. Development 133, 4211–4218 (2006).
63.Xie, K., Wu, C., and Xiong, L. Genomic organization, differential expression and interaction of SPL transcription factors and microRNA156 in rice. Plant Physiology 142, 280-293 (2006).
64.Yamaguchi, A., Wu, M.F., Yang, L., Wu, G., Poethig, R.S., and Wagner, D. The microRNA-regulated SBP-box transcription factor SPL3 is a direct transcriptional activator of LEAFY, FRUITFULL, and APETALA1. Development Cell 17, 268–278 (2009).
65.Yan, L., Loukoianov, A., Tranquilli, G., Helguera, M., Fahima, T., and Dubcovsky, J. Positional cloning of the wheat vernalization gene VRN1. Proceedings of the National Academy of Sciences 100, 6263-6268 (2003).
66.Yan L, L.A., Blechl, A., Tranquilli, G., Ramakrishna, W., SanMiguel, P., Bennetzen, J.L., Echenique, V., and Dubcovsky, J. The wheat VRN2 gene is a flowering repressor down-regulated by vernalization. Science 303, 1640-1644 (2004).
67.Yang, Z., Ebright, Y.W., Yu, B., and Chen, X. HEN1 recognizes 21–24 nt small RNAduplexes and deposits a methyl group onto the 2′ OH of the 3′ terminal nucleotide. Nucleic Acids Research 34, 667–675 (2006).
68.Zhao, C.Z., Xia, H., Frazier, T.P., Yao, Y.Y., Bi, Y.P., Li, A.Q., Li, M.J., Li, C.S., Zhang, B.H., and Wang, X.J. Deep sequencing identifies novel and conserved microRNAs in peanuts (Arachis hypogaea L.). BMC Plant Biology 10:3 (2010).
69.Zhou, X., Wang, G., Sutoh, K., Zhu, J.K., and Zhang, W. Identification of cold-inducible microRNAs in plants by transcriptome analysis. Biochimica et Biophysica Acta 1779, 780–788 (2008).