簡易檢索 / 詳目顯示

研究生: 林孜謙
Lin, Tzu-Chien
論文名稱: Septin7做為一種中心體蛋白,藉以調控細胞骨架和生長
Septin 7 as a centrosomal protein that regulates microtubule nucleation and proper cell growth
指導教授: 王家義
Wang, Chia-Yih
學位類別: 碩士
Master
系所名稱: 醫學院 - 細胞生物與解剖學研究所
Institute of Cell Biology and Anatomy
論文出版年: 2017
畢業學年度: 105
語文別: 英文
論文頁數: 61
中文關鍵詞: septin7中心體中心體蛋白細胞骨架微管架構細胞遷移p150glued
外文關鍵詞: Septin7, centrosome, centrosomal protein, microtubule nucleation, migration, p150glued
相關次數: 點閱:90下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 目前已知在哺乳類動物細胞中,不同亞群的Septin會依照特定的順序彼此鍵結而形成核心複合體,再依此為單位,繼續架構成更高層次的絲狀或找環狀結構。而在這些不同的Septin亞群之中,發現特別Septin7對於影響胚胎的發育以及細胞的分化非常重要,並且Septin7也參與了協調細胞分裂以及細胞遷移的調控過程。在先前的研究當中,也發現Septin7會出現在細胞移動方向的前緣、由細胞骨架actin所構成的stress fiber周圍,因而影響細胞的移動能力,然而Septin7對於細胞生長及遷移之間,其中確切的機制卻仍然不清楚。在本篇研究當中,我們發現Septin7不僅會出現在stress fiber的位置,甚至會位在細胞的中心體上面;並且除了septin7以外,其他的亞群如septin2或septin6都不會出現在中心體上,因此我們推論,septin7是一種中心體蛋白,因而成為影響正常細胞功能的關鍵。我們進而利用多種偵測中心體蛋白的實驗,證實septin7的確是一種中心體蛋白。已知中心體在細胞當中,是維持正常細胞週期的重要角色,也是細胞骨架(微管)的架構中心,因此我們也進一步分析septin7這個中心體蛋白對於細胞功能的影響。從實驗中發現,當細胞週期處在不同進程的時候,中心體上的setpin7表現量也會有明顯的差異。此外,當septin7的表現量被siRNA或者FCF等藥物抑制之後,就會使得中心體結構不穩定,以至於細胞週期無法正常進行,導致細胞生長的數量減少;並且這些septin7表現量低的細胞,其微管的架構能力也會明顯的受到抑制,因而細胞骨架不能正常的幫助中心體在細胞內移動,也會讓高基氏體的結構異常,而大幅的降低了細胞遷移的能力。另外,從實驗室先前的研究中,已經發現另一個也一樣會影響微管架構與細胞週期的中心體蛋白p150glued,因此我們懷疑,septin7可能藉由p150glued去影響細胞功能。從實驗中發現,septin7會和p150形成蛋白複合體,而septin7會透過調控p150蛋白穩定性的方式來影響p150的表現量;並且在抑制p150的表現量之後,會產生與septin7表現量降低時相同的情形,如抑制細胞生長、細胞遷移的能力降低,以及微管架構的異常情形。而當我們在septin7被抑制的細胞中,再送進不同的septin7 construct以及p150glued時,都可以恢復細胞骨架的微管架構能力。此外,從斑馬魚胚胎發育的過程中,也可以明顯的觀察出抑制septin7所導致的發育異常。因此在本篇實驗中,我們認為septin7作為一種中心體蛋白,會透過調控p150glued,而影響正常的細胞生長以及細胞遷移的能力。

    By interacting with different Septin subgroup, the mammalian septin core complex is arranged in the order of Septin-7-6-2-2-6-7 hetero-hexametric filament followed by orchestrating high-ordered filaments. Among these Septins, Septin7 is the essential unit of the core complex due to its irreplaceability. In addition, Septin7 is essential for development and differentiation, and coordinates cell division and migration. However, the role of Septin7 in regulating microtubule nucleation is as yet unknown. Here we showed that, in addition to co-localizing with stress fibers, Septin7, but not Septin6 and 2, also localized to the centrosome, the microtubule nucleating center, in a cell cycle-dependent manner. The level of centrosomal septin7 was higher during interphase but gradually reduced at M phase. Depletion of septin7 by siRNA or treated cells with Septin inhibitor forchlorfenuron (FCF), the microtubule nucleation activity was reduced, leading to centrosome mis-orientation and disorganized Golgi ribbon, thus resulting in poor cell migration. In addition, depletion of septin7 inhibited cell proliferation by reducing cyclin E expressions and S phase entry. We then found that the level of p150glued, other centrosomal protein regulates centrosome orientation and Golgi organization, was interacted with Septin7 and downregulated by Septin7. Depletion of p150glued resulted in a phenotype reminiscent of Septin7 deficient cells. To further confirm, we transfected different constructs to rescue the phenotype of nucleation defect caused by knockdown septin7.we found that the construct of septin7, septtin7-GBD and even p150glued can rescued the microtubule structure. Moreover, FCF treatment led to reducing microtubule nucleation and cell migration in zebrafish embryo supporting that Septin7 is essential for embryo development in vivo. Thus, we have uncovered the molecular mechanism by which Septin7 regulates cell growth and migration, at least in part, by controlling microtubule nucleation via p150glued.

    目錄 論文考試合格證明書 I 中文摘要 II ABSTRACT IV ACKNOWLEDGEMENT VI INTRODUCTION 1 1.The functions of Septins 1 2.The functions of centrosome 2 3.Microtubule nucleation 3 4.The functions of P150glued 4 MATERIAL and METHOD 6 RESULTS 11 A.Septin7 is a centrosomal protein. 11 B.Sepin7 does not affect the structure of centrosome. 12 C.The expression pattern of centrosomal septin7 is cell cycle dependent. 12 D.Septin7 regulates proper cell growth by mediating S phase entry 13 E.Septin7 is important for centrosome homeostasis 14 DISCUSSION 19 References 22 Figures 25 Figure 1. Septin7 localized on the basal body of primary cilia and co-localized with the centrosome 25 Figure 2. Only septin7 but other Septins is co-localized on the centrosome 26 Figure 3. Exogenous Septin7 can also localized on the centrosome 27 Figure 4. The expression level of Septin7 on the centrosome could be knockdown by specific siRNA 28 Figure 5. The signal of centrosomal Septin7 is independent on the microtubule transportation 29 Figure 6. Septin7 could be detected in the same fraction of centrosome extraction by the centrosome fractionation 30 Figure 7. Septin7 depletion did not destroy the structure of centrosome 31 Figure 8. The expression of septin7 variated at different cell cycle stage 32 Figure 9. The expression of septin7 variated at different cell cycle stage during M phase 33 Figure 10. The total protein level of septin7 in the cell was remained stable at different cell cycle stage 34 Figure 11. Septin7 depletion inhibit the cell growth 35 Figure 12. Septin7 depletion reduces the ability of S phase entry 36 Figure 13. Septin7 depletion reduces the ability of S phase entry 37 Figure 14. The ability of S phase defect could be rescued by introducing Septin7 constructs. 38 Figure 15. Septin7 mediates centrosome homeostasis 40 Figure 16. Septin7 depletion caused centrosome amplification is CDK dependent 41 Figure 17. Multiple centrosome caused by Septin7 led to irregular mitotic spindle pore 42 Figure 18. Septin7 is required for microtubule nucleation 43 Figure 19. Septin7 depletion inhibits cell migration 44 Figure 20. Septin inhibitor blocks the ability of cell migration 45 Figure 21. Septin7 depletion inhibits both the distance and orientation of cell migration 46 Figure 22. Septin7 depletion increases the ratio of mis-leading centrosome in migrating cell 47 Figure 23. Septin7 depletion leads to disrupted Golgi ribbon organization 48 Figure 24. The expression level of p150 is inhibited in septin7 depletion cells 49 Figure 25. The expression level of Septin7 in septin7 depletion cells 50 Figure 26. The protein-protein interaction between Septin7 and p150glued 51 Figure 27. The co-localization of Septin7 and p150glued on centrosome 52 Figure 28. The protein stability of p150 is reduced in Septin7 depletion cells. 53 Figure 29. p150 depletion inhibits the cell growth 54 Figure 30. p150glued depletion also inhibits cell migration 55 Figure 31. p150 is required for microtubule nucleation as well. 56 Figure 32. Nucleation defect could be rescued by Septin7 and P150 construct 58 Figure 33. Septin7 inhibitor FCF reduced cell division in zebrafish embryo. 59 Figure 34. Septin7 inhibitor FCF blocked the ability of embryonic migration. 60 Figure 35. The summary model 61

    1.Hartwell, L. H. Genetic control of the cell division cycle in yeast. IV. Genes controlling bud emergence and cytokinesis. Exp Cell Res 69, 265-276 (1971).
    2.Haarer, B. K. & Pringle, J. R. Immunofluorescence localization of the Saccharomyces cerevisiae CDC12 gene product to the vicinity of the 10-nm filaments in the mother-bud neck. Mol Cell Biol 7, 3678-3687 (1987).
    3.Kim, H. B., Haarer, B. K. & Pringle, J. R. Cellular morphogenesis in the Saccharomyces cerevisiae cell cycle: localization of the CDC3 gene product and the timing of events at the budding site. J Cell Biol 112, 535-544 (1991).
    4.Nishihama, R., Onishi, M. & Pringle, J. R. New insights into the phylogenetic distribution and evolutionary origins of the septins. Biol Chem 392, 681-687, doi:10.1515/BC.2011.086 (2011).
    5.McMurray, M. A. & Thorner, J. Septins: molecular partitioning and the generation of cellular asymmetry. Cell Div 4, 18, doi:10.1186/1747-1028-4-18 (2009).
    6.Mostowy, S. & Cossart, P. Septins: the fourth component of the cytoskeleton. Nat Rev Mol Cell Biol 13, 183-194, doi:10.1038/nrm3284 (2012).
    7.Leipe, D. D., Wolf, Y. I., Koonin, E. V. & Aravind, L. Classification and evolution of P-loop GTPases and related ATPases. J Mol Biol 317, 41-72, doi:10.1006/jmbi.2001.5378 (2002).
    8.Trimble, W. S. Septins: a highly conserved family of membrane-associated GTPases with functions in cell division and beyond. J Membr Biol 169, 75-81 (1999).
    9.Weirich, C. S., Erzberger, J. P. & Barral, Y. The septin family of GTPases: architecture and dynamics. Nat Rev Mol Cell Biol 9, 478-489, doi:10.1038/nrm2407 (2008).
    10.Sandrock, K. et al. Characterization of human septin interactions. Biol Chem 392, 751-761, doi:10.1515/BC.2011.081 (2011).
    11.Sellin, M. E., Sandblad, L., Stenmark, S. & Gullberg, M. Deciphering the rules governing assembly order of mammalian septin complexes. Mol Biol Cell 22, 3152-3164, doi:10.1091/mbc.E11-03-0253 (2011).
    12.Abbey, M. et al. GTPase domain driven dimerization of SEPT7 is dispensable for the critical role of septins in fibroblast cytokinesis. Sci Rep 6, 20007, doi:10.1038/srep20007 (2016).
    13.Ghossoub, R. et al. Septins 2, 7 and 9 and MAP4 colocalize along the axoneme in the primary cilium and control ciliary length. J Cell Sci 126, 2583-2594, doi:10.1242/jcs.111377 (2013).
    14.Ling, H., Peng, L., Seto, E. & Fukasawa, K. Suppression of centrosome duplication and amplification by deacetylases. Cell Cycle 11, 3779-3791, doi:10.4161/cc.21985 (2012).
    15.Doxsey, S. Re-evaluating centrosome function. Nat Rev Mol Cell Biol 2, 688-698, doi:10.1038/35089575 (2001).
    16.Pihan, G. A. Centrosome dysfunction contributes to chromosome instability, chromoanagenesis, and genome reprograming in cancer. Front Oncol 3, 277, doi:10.3389/fonc.2013.00277 (2013).
    17.Elric, J. & Etienne-Manneville, S. Centrosome positioning in polarized cells: common themes and variations. Exp Cell Res 328, 240-248, doi:10.1016/j.yexcr.2014.09.004 (2014).
    18.Hinchcliffe, E. H. & Sluder, G. Two for two: Cdk2 and its role in centrosome doubling. Oncogene 21, 6154-6160, doi:10.1038/sj.onc.1205826 (2002).
    19.Fujita, H., Yoshino, Y. & Chiba, N. Regulation of the centrosome cycle. Molecular & cellular oncology 3, e1075643, doi:10.1080/23723556.2015.1075643 (2016).
    20.Fukasawa, K. Centrosome amplification, chromosome instability and cancer development. Cancer Lett 230, 6-19, doi:10.1016/j.canlet.2004.12.028 (2005).
    21.Akhmanova, A. & Steinmetz, M. O. Control of microtubule organization and dynamics: two ends in the limelight. Nat Rev Mol Cell Biol 16, 711-726, doi:10.1038/nrm4084 (2015).
    22.Mitchison, T. & Kirschner, M. Microtubule assembly nucleated by isolated centrosomes. Nature 312, 232-237 (1984).
    23.McIntosh, J. R. & Euteneuer, U. Tubulin hooks as probes for microtubule polarity: an analysis of the method and an evaluation of data on microtubule polarity in the mitotic spindle. J Cell Biol 98, 525-533 (1984).
    24.Delgehyr, N., Sillibourne, J. & Bornens, M. Microtubule nucleation and anchoring at the centrosome are independent processes linked by ninein function. J Cell Sci 118, 1565-1575, doi:10.1242/jcs.02302 (2005).
    25.Jaffe, A. B. & Hall, A. Rho GTPases: biochemistry and biology. Annu Rev Cell Dev Biol 21, 247-269, doi:10.1146/annurev.cellbio.21.020604.150721 (2005).
    26.Li, K. et al. HPS6 interacts with dynactin p150Glued to mediate retrograde trafficking and maturation of lysosomes. J Cell Sci 127, 4574-4588, doi:10.1242/jcs.141978 (2014).
    27.Schroer, T. A. Dynactin. Annu Rev Cell Dev Biol 20, 759-779, doi:10.1146/annurev.cellbio.20.012103.094623 (2004).
    28.King, S. J. & Schroer, T. A. Dynactin increases the processivity of the cytoplasmic dynein motor. Nat Cell Biol 2, 20-24, doi:10.1038/71338 (2000).
    29.Karki, S. & Holzbaur, E. L. Cytoplasmic dynein and dynactin in cell division and intracellular transport. Curr Opin Cell Biol 11, 45-53 (1999).
    30.Askham, J. M., Vaughan, K. T., Goodson, H. V. & Morrison, E. E. Evidence that an interaction between EB1 and p150(Glued) is required for the formation and maintenance of a radial microtubule array anchored at the centrosome. Mol Biol Cell 13, 3627-3645, doi:10.1091/mbc.E02-01-0061 (2002).
    31.Ozaki, Y. et al. The dynactin complex maintains the integrity of metaphasic centrosomes to ensure transition to anaphase. J Biol Chem 286, 5589-5598, doi:10.1074/jbc.M110.167742 (2011).
    32.Lazarus, J. E., Moughamian, A. J., Tokito, M. K. & Holzbaur, E. L. Dynactin subunit p150(Glued) is a neuron-specific anti-catastrophe factor. PLoS Biol 11, e1001611, doi:10.1371/journal.pbio.1001611 (2013).
    33.Chen, T. Y. et al. Cell Cycle-Dependent Localization of Dynactin Subunit p150 glued at Centrosome. J Cell Biochem 116, 2049-2060, doi:10.1002/jcb.25160 (2015).
    34.Schliwa, M., Euteneuer, U., Graf, R. & Ueda, M. Centrosomes, microtubules and cell migration. Biochem Soc Symp 65, 223-231 (1999).
    35.Yadav, S., Puri, S. & Linstedt, A. D. A primary role for Golgi positioning in directed secretion, cell polarity, and wound healing. Mol Biol Cell 20, 1728-1736, doi:10.1091/mbc.E08-10-1077 (2009).
    36.Ligon, L. A., Shelly, S. S., Tokito, M. & Holzbaur, E. L. The microtubule plus-end proteins EB1 and dynactin have differential effects on microtubule polymerization. Molecular biology of the cell 14, 1405-1417, doi:10.1091/mbc.E02-03-0155 (2003).
    37.Nakahira, M. et al. A draft of the human septin interactome. PLoS One 5, e13799, doi:10.1371/journal.pone.0013799 (2010).
    38.Dolat, L. et al. Septins promote stress fiber-mediated maturation of focal adhesions and renal epithelial motility. J Cell Biol 207, 225-235, doi:10.1083/jcb.201405050 (2014).
    39.Etienne-Manneville, S. Microtubules in cell migration. Annu Rev Cell Dev Biol 29, 471-499, doi:10.1146/annurev-cellbio-101011-155711 (2013).

    無法下載圖示 校內:2022-06-30公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE