| 研究生: |
黃琮暉 Huang, Tsung-Hui |
|---|---|
| 論文名稱: |
雙頻帶環型微波濾波器 Duan-Band Microwave Filter with Ring Resonator Structure |
| 指導教授: |
洪茂峰
Houng, Mau-Phon |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
電機資訊學院 - 微電子工程研究所 Institute of Microelectronics |
| 論文出版年: | 2008 |
| 畢業學年度: | 96 |
| 語文別: | 英文 |
| 論文頁數: | 133 |
| 中文關鍵詞: | 封裝 、天線 、低損失 、微小化 、混附波 、高介電常數 、低溫共燒陶瓷 、環型共振器 、雙頻 、濾波器 |
| 外文關鍵詞: | low-loss, antenna, package, spurious, filter, LTCC, miniaturization, high-dielectric-constant, dual-band, ring resonator |
| 相關次數: | 點閱:98 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文的研究在於雙頻帶環型濾波器設計的探討,其中包含混附波可調、低損失以及微小化三個觀點。本論文首先研究雙模態以及步階式阻抗共振器。我們分析了雙模態以及步階式阻抗共振器的理論,並計算以及設計雙頻帶上的應用。我們發現適當設計步階式阻抗共振器於環型結構內,可以適當調整混附波響應的頻率位置。然而,在保持通帶的特性為前提下,常用的步階式阻抗共振器並無法有效控制混附波的位置,使其成為第二個通帶。因此,我們提出一種新型的步階式阻抗共振器結構。利用該新型的步階式阻抗共振器結構,除了可以保持雙模態濾波器的特性外,亦可良好控制混附波的位置,成為雙頻帶環型濾波器。
其次,我們從低損失以及微小化的觀點,探討新型的步階式阻抗共振器結構參數,將濾波器特性更進一步改善。在低損失的目標下,我們可以利用共平面波導饋入來改善傳輸損失。在微小化的目標下,我們結合高介電常數微波陶瓷基板,大幅降低濾波器的尺寸。另一方面,我們亦結合低溫共燒陶瓷製程,使其更貼近產業量產的需求。我們詳細地分析與比較所提出的各式濾波器的特性,並且藉由數個濾波器的製作驗證了本論文所闡述的設計方法的正確性。
最後,本論文將雙模態濾波器使用基板整合波導結構,設計K頻帶用之濾波器,其具有低損失以及高選擇性的特性。我們完整地探討不同架構的雙頻帶環型濾波器,包含微帶線餽入以及共平面波導饋入。此外,我們亦提出不同的製程技術來結合,並具體實現。在微波電路設計中,環型共振器扮演了重要的角色,因為它具有無終端效應以及結構簡單的特性。在未來越來越高的操作頻率下,將更被廣為設計。此外,封裝貫孔所引起之電感效應以及寬頻介質共振天線在本論文也被研究與驗證。
This research is about the improved ring resonator filter designs including three aspects of the adjustable spurious, low-loss and miniaturization. This thesis starts from the fundamental studies of dual-mode and stepped-impedance-resonator (SIR) is introduced. The theory of the dual-mode and SIR are analyzed that can be used for calculating and designing the dual-band application. It can found that design the SIR in the ring resonator structure, the position of spurious response can be adjusted properly. However, the conventional SIR can't control the position of spurious response, and keep the passband characteristic, simultaneously. Therefore, a novel SIR structure is proposed in this thesis. It introduces the proposed SIR structure that can keep the characteristic of the dual-mode filter. Besides, the position of spurious response can also be controlled accurately.
In the second part of this thesis, the viewpoint of low-loss and miniaturization are first reviewed. In the viewpoint of low-loss, the coplanar-waveguide (CPW) feeding in input and output (I/O) can be adopted and improved transmission loss. In the viewpoint of miniaturization, the filter combines the high dielectric constant (high- ) ceramic substrate that reduces the resonator size. On the other hand, the filter also combines low-temperature-cofired-ceramic (LTCC) that to enhance the ability of production in large quantity. The characteristics of the proposed filters are analyzed and compared, and all of them have been experimentally verified.
In the last part of this thesis, a K-band dual-mode filter using substrate integrated waveguide (SIW) structure with low-loss and high selectivity is designed. In this thesis, several structures of the filters are discussed, including microstrip and CPW feeding in I/O. In addition, several type of the filter are fabricated on the different substrate, and this concept has been successfully realized. In microwave circuits design, the ring resonator has played an important role. Because of the ring have the characteristic of no fringing field and simple structure. The ring resonator concept in microwave circuits design will more important in the millimeter-wave.
References:
[1] P. R. Gray and R.G. Meyer, “ Future Directions in Silicon ICs for RF Personal Communications “, Proc. IEEE Custom Integrated Circuits Conf. (CICC), pp. 83-90, 1995.
[2] 邱煥凱, “ GaAs Microwave Monolithic Integrated Circuit Chip Set Design for 2.4-2.5 GHz ISM Band Front End “, 國立台灣大學電機工程研究所博士論文,民國八十六年。
[3] IEEE Std 802.11a/D7.0-1999, “ Part11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specification: High-Speed Physical Layer in the 5GHz Band ”.
[4] ETSI, “ Broadband Radio Access Network (BRAN); HIPERLAN type 2 Technical Specification; Physical (PHY) Layer “, Aug. 1999.
[5] 鄧友清, “ 高速無線區域網路時代即將到來 “,新通訊第9期,2001年11月號。
[6] E. A. Wolff and R. Kaul, “ Microwave Engineering and Systems Applications “, 2nd Edition, New York J. Wiley, pp. 605-621, 1988.
[7] G. Gonzalez, “ Microwave Transistor Amplifiers “, Prentice-Hall PTR, 1997.
[8] D. Pozar, “ Microwave Engineering-Second Edition “, John Wiley and Sons, INC., 1998.
[9] T.T. Ha, “ Solid State Microwave Amplifier Design “, John Wiley and Sons, 1981.
[10] H. Samavati, H.R. Rategh and T.H. Lee, “ A 5-GHz CMOS Wireless LAN Receiver Front-End “, IEEE J. Solid-State Circuits, Vol. 35, pp. 765-772, May 2000.
[11] B. Foley, P. Murphy and A. Murphy, “ A Monolithic SiGe 5 GHz Low Noise Amplifier and Tunable Image-Reject Filter For Wireless LAN Applications “, High Frequency Postgraduate Student Colloquium, pp. 26-31, 2000.
[12] J. S. Goo, “ A Noise Optimization Technique For Integrated Low-Noise Amplifiers “, IEEE J. Solid-State Circuits, Vol. 37, pp. 994-1002, Aug. 2002.
[13] A.A.M. Youssef and K. Sharaf, “ VLSI Design of CMOS image-reject LNA For 950-MHz Wireless Receivers “, ICCSC’02. 1st IEEE International Conference on, Circuit and Systems for Communications, 2002. Proceedings, pp. 330-333.
[14] 彭光耀,” A Study of the Design Theory for Front-End CMOS Low-Noise Amplifiers,“ 國立中山大學電機工程學系碩士論文,民國91年。
[15] C.K. Campbell, “ Surface Acoustic Wave Devices for Mobile and Wireless Communications “, Academic Press, San Diego, USA, 1998.
[16] K. Y. Hashimoto, “ Surface Acoustic Wave Devices in Telecommunications,“ Springer, 2000.
[17] K. Hashimoto, G. Endoh and M. Yamaguchi, “ Coupling-of-Modes Modeling for Fast and Orecise Simulation of leaky Surface Acoustic Wave Devices “, IEEE Trans. Ultrason. Ferroelect. Freq. Contr., vol. 1, pp. 251-256, Nov. 1995.
[20] 吳宗和, “ Simulation, Implementation and Integration Test of an RF Module for 5.2GHz Wireless LANs “, 國立中正大學電機工程研究所碩士論文,民國九十一年。
[19] P. Vizmuller, “ RF Design Guide: Systems, Circuits, and Equations “, Artech House, 1995.
[20] HP, “ Wireless R&D Symposium “, 1997.
[21] 劉先祐, “ Design of 2.4 GHz Transceiver RF Modules for ISM-Band Digital Wireless Communications “, 國立成功大學電機工程研究所碩士論文,民國八十六年。
[22] G. Gonzalez, “ Microwave Transistor Amplifiers Analysis and Design Second Edition “, Prentice-Hall INC., 1997.
[22] R.M. Barrett, “ Microwave Printed Circuits --- the Early Years “, IEEE Trans. Microwave Theory Tech., Vol. MTT-32, pp. 983-990, Sept. 1984.
[23] S. B. Cohn, “Parallel-coupled transmission-line-resonator filters,” IRE Trans. Microwave Theory Tech., vol. MTT-6, pp. 223-231, April 1958.
[24] E. G. Cristal and S. Frankel, “Hairpin-line and hybrid hairpin-line/half-wave parallel-coupled-line filters,” IEEE Trans. Microwave Theory Tech., vol. MTT-20, pp. 719-728, Nov. 1972.
[25] A. E. Williams, “A four-cavity elliptic waveguide filter,” IEEE Trans. Microwave Theory Tech., Vol. MTT-18, pp. 1109-1114, Dec. 1970.
[26] R. Levy, “Filters with single transmission zeros at real or imaginary frequencies,” IEEE Trans. Microwave Theory Tech., Vol. MTT-24, pp. 172-181, April 1976.
[27] S. M. Wang, C. H. Chi, M. Y. Hsieh and C. Y. Chang, “Miniaturized spurious passband suppression microstrip filter using meandered parallel coupled lines,” IEEE Trans. Microwave Theory Tech., vol. 53, pp. 747 – 753, Feb. 2005.
[28] M. L. Hsieh, T. H. Huang, L. S. Chen, C. H. Sun, S. Wang, M. P. Houng and S. L. Fu, “A Miniaturized bandpass filter fabricated on high dielectric constant ceramic substrates”, Microwave Opt. Technol. Lett., vol. 49, pp. 2087-2090, Sep. 2007.
[29] L. Rigaudeau, P. Ferrand, D. Baillargeat, S. Bila, S. Verdeyme, M. Lahti and T. Jaakola, “LTCC 3-D resonators applied to the design of very compact filters for Q-band applications,” IEEE Trans. Microwave Theory Tech., vol. 54, pp. 2620 – 2627, June 2006.
[30] T. M. Shen, C. F. Chen, T. Y. Huang and R. B. Wu, “Design of Vertically Stacked Waveguide Filters in LTCC,” IEEE Trans. Microwave Theory Tech., Vol. 55, pp. 1771 – 1779, Aug. 2007.
[31/65] I. Wolff, “Microstrip bandpass filter using degenerate modes of a microstrip ring resonator,” Electron Lett., vol. 8, pp. 163-164. June 1972.
[32] K. Chang and L. H. Hsieh, Microwave Ring Circuits and Related Structures, Wiley, 2004.
[33] T. C. Edwards, “Microstrip measurements,” MTT-S Int. Microwave Symp. Dig., vol. 82, pp.338-341, Dec. 1982.
[34] L. H. Hsieh and K. Chang, “Simple analysis of the frequency modes for microstrip ring resonator of any general shape and the correction of an error in literature,” Microwave Opt. Technol. Lett, vol. 38, pp. 209-213, Aug. 2003.
[35] M. Makimoto and S. Yamashita, “Bandpass Filters Using Parallel Coupled Stripline Stepped Impedance Resonators” IEEE Trans. Microwave Theory Tech.,, vol. 28, pp. 1413-1417. Dec. 1980.
[36] J.S. Hong and M.J. Lancaster, “ Couplings of Microstrip Square Open-Loop Resonators for Cross-Coupled Planar Microwave Filters ”, IEEE Trans. Microwave Theory Tech., Vol.44, No.11, pp.2099-2109, Nov. 1996.
[37] C.M. Tsai, S.Y. Lee and C.C. Tsai, “ Performance of a Planar Filter using a 0° Feed Structure ”, IEEE Trans. Microwave Theory Tech., Vol.50, No.10, pp.2362-2367, Oct. 2002.
[38] A. Gorur, “ Realization of a Dual-Mode Bandpass Filter Exhibiting Either a Chebyshev or an Elliptic Characteristic by Changing Perturbation’s Size ”, IEEE Microw. Wireless Compon. Lett., Vol.14, No.3, pp.118-120, March 2004.
[39] L. Zhu and K. Wu, “ A Joint Field/Circuit Model of Line-to-Ring Coupling Structure and Its Application to the Design of Microstrip Dual-mode Filters and Ring Resonator Circuits ”, IEEE Trans. Microwave Theory Tech., Vol.47, No.10, pp.1938-1948, Oct. 1999.
[40] L. H. Hsieh and K. Chang, “ Compact, Low Insertion-Loss, Sharp-Rejection, and Wide-Band Microstrip Bandpass Filters ”, IEEE Trans. Microwave Theory Tech., Vol.51, No.4, pp.1241-1246, April 2003.
[41] H. J. Chen, M. H. Weng, J. H. Horng, M. P. Houng and Y. H. Wang, “ Wideband and Low-Loss Triangular Patch Dual-mode Bandpass Filter using Quasi-Fork Recessed Tapped I/O “, Microwave Opt. Technol. Lett.,, Vol.43, No.2, pp.99-101, Oct. 2004.
[42] H. J. Chen, T. H. Huang, L. S. Chen, J. H. Horng and M. P. Houng, “ New Design Concept of Dual-Mode Bandpass Filter by Using Non-Orthogonal Input and Output Ports for Wireless Application “, Microwave Opt. Technol. Lett., Vol.48, No.4, pp.639-641, April 2006.
[43] J. M. Carroll and K. Chang, “ Microstrip Mode Suppression Ring Resonator ”, Electron. Lett., Vol.30, No.22, pp.1861-1862, Oct. 1994.
[44] U. Karacaoglu, D.S. Hernandez, I.D. Robertson and M. Guglielmi, “ Harmonic Suppression in Microstrip Dual-Mode Ring-Resonator Bandpass Filters ”, IEEE MTT-S Digest TH3F-9, pp.1635-1638, June 1996.
[45] K. K. M. Cheng, “ Design of Dual-Mode Ring Resonators with Transmission Zeros ”, Electron. Lett., Vol. 33, No.16, pp. 1392–1393, July 1997.
[46] L. H. Hsieh and K. Chang, “ Dual-mode Quasi-Elliptic-Function Bandpass Filters Using Ring Resonators with Enhanced-Coupling Tuning Stubs ”, IEEE Trans. Microwave Theory Tech., Vol.50, No.5, pp.1340-1345, May 2002.
[47] J.S. Hong and M.J. Lancaster, “ Microstrip Filter for RF/Microwave Applications ”, New York: Wiley, 2001.
[48] H. Miyake, S. Kitazawa, T. Ishizaki, T. Yamada and Y. Nagatom, “A miniaturized monolithic dual band filter using ceramic lamination technique for dual mode portable telephones,” in IEEE MTT-S Int. Dig., vol. 2, pp. 789–792, June 1997.
[49] S. Wu and B. Razavi, “A 900-MHz/1.8-GHz CMOS receiver for dual-band,” IEEE J. Solid-State Circuits, vol. 33, pp. 2178-2185, Dec. 1998.
[50] C. Quendo, E. Rius and C. Person, “An original topology of dual-band filter with transmission zeros,” in IEEE MTT-S Int. Dig., vol. 2, pp. 1093–1096, June 2003.
[51] L. C. Tsai and C. W. Hsue, “Dual-band bandpass filters using equal-length coupled-serial-shunted lines and Z-transform technique,” IEEE trans. Microw. Theory Tech., vol. 52, pp. 1111-1117, April 2004.
[52] S. F. Chang, Y. H. Jeng and J. L. Chen, “Dual-band step-impedance bandpass filter for multimode wireless LANs,” Electron. Lett., vol. 40, pp. 38-39, Jan. 2004.
[53] S. Sun and L. Zhu, “Compact Dual-Band Microstrip Bandpass Filter Without External Feeds,” IEEE Microw. Wireless Compon. Lett., vol. 15, pp.644-646, Oct. 2005.
[54] J. S. Hong and M. J. Lancaster, “Microstrip bandpass filter using degenerate modes of a novel meander loop resonator,” IEEE Microwave Guided Wave Lett., vol. 5, pp. 371-372, Nov. 1995.
[55] J. T. Kuo, T. H. Yeh and C. C. Yeh, “Design of microstrip bandpass filters with a dual-passband response,” IEEE trans. Microw. Theory Tech., vol. 53, pp. 1331-1337, April 2005
[56] J. S. Hong and M. J. Lancaster, Microstrip Filter for RF/Microwave Applications. New York: Wiley, 2001.
[57] S. B. Cohn, “Parallel coupled transmission-line resonator filters,” IRE Trans. Microw. Theory Tech., vol. 6, pp. 223–231, April 1958.
[58] E. G. Cristal and S. Frankel, “Hairpin-line and hybrid hairpin-line/halfwave parallel-coupled-line filters,” IEEE Trans. Microw. Theory Tech., vol. 20, pp. 719–728. Nov. 1972.
[59] M. L. Hsieh, L. S. Chen, S. M. Wang, C. H. Sun, M. H. Weng, M. P. Houng and S. L. Fu, “Low-temperature sintering of microwave dielectrics (Zn,Mg)TiO3,” Jpn. J. Appl. Phys. vol. 44, pp. 5045-5048, July 2005.
[60] J. T. Kuo, M. J. Maa, and P. H. Lu, “A microstrip elliptic function filter with copact miniaturized haipin resonators,” IEEE Microwave Guided Wave Lett., vol. 10, pp. 94-95, Mar. 2000.
[61] C. S. Ahn, J. Lee, and Y. S. Kim, “Design flexibility of an open-loop resonator filter using similarity transformation of coupling matrix,” IEEE Microw. Wireless Compon. Lett., vol. 15, pp. 262-264, April 2002.
[62] A. Sutono, D. Heo, J.Y. Chen, and J. Laskar, “High-Q LTCC-based passive library for wireless system-on-package (SOP) module development,” IEEE Trans. Microw. Theory Tech., vol. 49, pp. 1715–1724. Oct. 2001.
[63] C. H. Lee, A. Sutono, S. Han, K. Lim, S. Pinel, E.M. Tentzeris, and J. Laskar, “A compact LTCC-based Ku-band transmitter module,” IEEE Trans. Adv. Packag., vol. 25, pp. 374–384, Aug. 2002.
[64] J. S. Hong and M. J. Lancaster, “Design of highly selective microstrip bandpass filters with a single pair of attenuation poles at finite frequencies,” IEEE trans. Microw. Theory Tech., vol. 48, pp. 1098-1107, July 2000.
[70] J. S. Hong and M. J. Lancaste, “Couplings of microstrip square open-loop resonators for cross-coupled planar microwave filters,” IEEE Trans. Microwave Theory Tech., vol. 44, pp. 2099 – 2109, Nov. 1996.
[71] R. Levy, R. V. Snyder, and G. Matthaei, “Design of microwave filters,” IEEE Trans. Microwave Theory Tech., vol. 50, pp. 783–793, Mar. 2002.
[72] A. E. Atia and A. E. Williams, “Narrow-bandpass waveguide filters,” IEEE Trans. Microwave Theory Tech., vol. 20, pp. 258–265, April 1972.
[73] J. H. Vogelman, “High-Power Microwave Filters,” IEEE Trans. Microwave Theory Tech., vol. 6, pp. 429–439, Oct. 1958.
[74] Y. Cassivi, L. Perregrini, P. Arcioni, M. Bressan, K. Wu, and G. Conciauro, “Dispersion characteristics of substrate integrated rectangular waveguide,” IEEE Microw. Wireless Compon. Lett., vol. 12, pp. 333–335, Sep. 2002.
[75] C. Y. Chi and G. M. Rebeiz, “A Low-loss 20GHz Micromachined Bandpass Filter,” IEEE MTT-S Int. Microw. Symposium Dig.,vol. 3, pp. 1531-1534, May 1995.
[76] X. Li, J. Gao, C. L. Law and S. Aditya, “K-band λ/2 Resonators Micromachined Filter Design,” Information, Communications and Signal Processing, vol. 2, pp. 15-18, Dec. 1999.
[77] Y. Cassivi and K.Wu, “Lowcost microwave oscillator using substrate integrated waveguide cavity,” IEEE Microw. Wireless Compon. Lett., vol. 13, pp. 48–50, Feb. 2003.
[78] F. Xu,Y. L. Zhang,W. Hong, K.Wu, and T. J. Cui, “Finite-difference frequency- domain algorithm for modeling guided-wave properties of substrate integrated waveguide,” IEEE Trans. Microw. Theory Tech., vol. 51, pp. 2221–2227, Nov. 2003.
[79] A. Gorur, C. Karpuz and M. Akpinar, “A reduced-size dual-mode bandpass filter with capacitively loaded open-loop arms,” IEEE Microw. Wireless Compon. Lett., vol. 13, pp. 385-387, Sep.2003.
[80] H. Li, W. Hong, T. J. Cui, and K. Wu, “Propagation characteristics of substrate integrated waveguide integrated waveguide based on LTCC,” IEEE MTT-S Int. Microwave Symp. Dig. vol. 3, pp. 2045–2048, June 2003.
[76] A. Petosa, A. Ittipiboon, Y. M. M. Antar, and D. Roscoe, “Recent advances in dielectric-resonator antenna technology,” IEEE Antennas Propag Mag vol. 40 pp. 35-48 June 1998.
[77] S. Long, M. McAllister, and L. Shen, “The resonant cylindrical dielectric cavity antenna,” IEEE Trans Antennas Propag., vol. 3, pp. 406–412, May 1983.
[78] M. S. Al Salameh, Y. M. M. Antar, and G. Seguin, “Coplanar-waveguide-fed slot-coupled rectangular dielectric resonator antenna,” IEEE Trans. Antenna Propag., vol. 50, pp. 1415–1419, Oct. 2002.
[79] A. A. Kishk, A. Ittipiboon, Y. M. M. Antar, and M. Cuhaci, “Slot excitation of the dielectric disk radiator,” IEEE Trans. Antenna Propag., vol. 43, pp. 198–201, Feb. 1995.
[80] R. Chair, A. A. Kishk, and K. F. Lee, “Wideband Simple Cylindrical Dielectric Resonator Antennas,” IEEE Microwave and Wireless Component Letters., vol. 15, pp. 241–243, April 2005.
[81] A. A. Kishk, X. Zhang, A. W. Glisson, and D. Kajfez, “Numerical analysis of stacked dielectric resonator antennas excited by a coaxial probe for wideband applications,” IEEE Trans. Antenna Propag., vol. 51, pp. 1996–2006, Aug. 2003.
[82] B. Li and K. K. Leung, “Strip-fed rectangular dielectric resonator antennas with/without a parasitic patch,” IEEE Trans. Antenna Propag., vol. 53, pp, 2200–2207, July 2005.
[83] S. H. Ong, A. A. Kishk, and A. W. Glisson,” Wideband disc-ring dielectric resonator antenna,” Microwave Opt. Technol. Lett.,,vol. 35, pp. 425–428, Dec. 2002.
[84] A. Petosa, N. Simons, R. Siushansian, A. Ittipiboon, and M. Cuhaci, “Design and analysis of multisegment dielectric resonator antennas,” IEEE Trans. Antenna Propag., vol. 48, pp. 738–742, May 2000.
[85] J. Y. Sze and K. L. Wong, “Bandwidth enhancement of a microstrip line-fed printed wide-slot antenna,” IEEE Trans. Antenna Propag., vol. 49, pp. 1020–1027, July 2001.
[86] T. S. Horng, S. M. Wu, H. H. Huang, C. T. Chiu, and C. P. Hung, “Modeling of lead-frame plastic CSPs for accurate prediction of their lowpass filter effects on RFICs,“ IEEE Trans. Microwave Theory Tech., vol. 49, pp.1538-1545, Sept. 2001.
[87] S. F. Chang, J. L. Chen, and C. C. Liu, “A novel image-rejection amplifier for wireless communications,” IEEE Proc APMC2001, vol. 3, pp. 996–999, Dec. 2001.
[88] J. Gaubert, M. Egels, P. Pannier, and S. Bourdel, “Design method for broadband CMOS RF LNA,” Electron. Lett., vol. 41, pp. 382-384, March 2005.
[89] T. K. Nguyen, N. J. Oh, C. Y. Cha, Y. H. Oh, G. J. Ihm, and S. G. Lee, “Image-rejection CMOS low-noise amplifier design optimization techniques,” 53 (2005) IEEE Trans. Microwave Theory Tech., vol. 53, pp. 538–547, Feb. 2005.
[90] A. Griol and J. Marti, “Microstrip multistage coupled ring active bandpass filters with harmonic suppression,” Electron. Lett., vol. 35, pp. 575–577, April 1999.
[91] M. H. Weng, R. Y. Yuan, T. H. Huang, H. J. Chen, W. N. Chen, and M. P. Houng, “Spurious suppression of a microstrip filter using three types of rectangular PBG loops,” IEEE Trans. Ultrason. Ferroelect. Freq. Contr., vol. 52, pp. 487-490, March 2005.
[92] M. H. Weng, R. Y. Yang, C. Y. Hung, H. W. Wu, and M. P. Houng, “A dual-mode bandpass filter with a wide stopband,” Microwave Opt. Technol. Lett., vol. 43, pp. 177-179, Oct. 2004.
[93] R. Y. Yang, M. H. Weng, H. W. Wu, T. H. Huang, and M. P. Houng, “Dual-mode ring bandpass filter using defected ground structure with a wider stopband,” IEICE Trans. Vol. E87-C, pp. 2150–2157, 2004.
[94] T. H. Lee, “The design of CMOS radio-frequency integrated circuit,” Communications Engineer, vol. 2, pp. 47-47, Aug. 1998.
[95] B. C. Wadell, Transmission line design handbook, Artech House, Boston, 1991.