| 研究生: |
陳彥翰 Chen, Yen-Han |
|---|---|
| 論文名稱: |
具蕭基能障源極氧化銦鎵鋅薄膜電晶體之研製與電性分析 Fabrication and Characterization of InGaZnO Thin-Film Transistors with a Schottky Barrier Source |
| 指導教授: |
王水進
Wang, Shui-Jinn |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 微電子工程研究所 Institute of Microelectronics |
| 論文出版年: | 2015 |
| 畢業學年度: | 103 |
| 語文別: | 中文 |
| 論文頁數: | 105 |
| 中文關鍵詞: | 氧化銦鎵鋅 、蕭基二極體 、薄膜電晶體 、蕭基能障薄膜電晶體 |
| 外文關鍵詞: | IGZO, Schottky diode, thin film transistor, Schottky barrier thin-film transistor |
| 相關次數: | 點閱:101 下載:13 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
非晶氧化銦鎵鋅薄膜電晶體,因具優異薄膜均勻度、高載子遷移率與低溫製程,擁有可應用於液晶面板或可撓式基板上做為驅動與畫素開關元件之潛力,目前已引起熱烈的研究。然而,傳統氧化銦鎵鋅薄膜電晶體因源極欲通道間缺少如p-n接面足夠大的能障,故於零閘極電壓時漏電流較大,此一缺點使其在應用上仍存限制。為了克服此缺點,本研究利用不同蕭基接面及數種增強蕭基位障高度之結構降低其漏電流以改善薄膜電晶體特性。
第一部份為蕭基二極體的製備,由於氧化銦鎵鋅表面缺陷密度過高,與上接觸金屬無法形成良好的蕭基接面,藉由通入氧氣含量為20%之氧化銦鎵鋅,以及一8 nm之氧化矽鉿介面層,可以達到較佳的二極體之整流特性。於Au/HfSiO/O2-rich IGZO/Ti為結構的蕭基二極體,可獲得電流整流比為102,蕭基能障為0.73 eV。於Ag/HfSiO/Ti為結構的蕭基二極體,可得電流整流比為104,蕭基能障為0.83 eV。由實驗結果發現,此雙層介面層分別扮演不同的角色,O2-rich IGZO介面層可有效降低IGZO之表面缺陷密度,且能增加蕭基接面之空乏區寬度,減少電子穿透;HfSiO介面層可修補IGZO之表面態位密度,且能抑制上接觸金屬與氧化銦鎵鋅的相互擴散。
第二部分為氧化銦鎵鋅蕭基能障薄膜電晶體(IGZO SBTFTs)之製作。利用金、銀做為源極金屬,於源極與IGZO通道層之介面,依序沉積O2-rich IGZO與HfSiO介面層,由此雙層介面層結構,獲得合適之蕭基金半接面,成功製備IGZO SBTFTs,由實驗結果以金為源極金屬之蕭基薄膜電晶體,可獲得元件特性關閉電壓為0.02 V,電流開關比為2.90×106、次臨界擺幅為0.097 V/dec及載子遷移率為8.19 cm2/Vs。達成本論文之降低關閉電流、提升開關比、改善次臨限擺幅之目標。
本論文成功於低溫環境下製備蕭基能障層,且應用及改善氧化銦鎵鋅薄膜電晶體之漏電流問題,故此蕭基能障層可廣泛應用於各類基板,如矽基板、玻璃基板與軟性塑膠基板,於顯示器相關技術,應用深具潛力。
Amorphous indium gallium zinc oxide (α-IGZO) Schottky barrier thin-film transistors (SBTFTs) with O2-rich IGZO interlayer (IL) and HfSiO/O2-rich IGZO bilayer stack are fabricated and characterized. Significant improvement in device characteristics obtained from Schottky contact source is demonstrated and discussed. With stacking a 25-nm-thick O2-rich IGZO and 8-nm-thick HfSiO bilayer in the source region, experimental results show that the turn-off voltage of SBTFTs increases from -0.7 V to about 0 V, the turn-off current decreases from 10-10 A to 10-11 A, the on/off current ratio increases from 105 to 106, the subthreshold swing decreases from 0.204 V/dec to 0.097 V/dec, and the mobility increases from 7.15 cm2/Vs to 8.19 cm2/Vs.
[1] S. M. Sze, Semiconductor Devices: Physics and Technology, Wiley, New York, 2002.
[2] S. M. Sze, Physics of Semiconductor of Devices, John Wiley & Sons, New York, 1981.
[3] A. Chasin, S. Steudel, K. Myny, M. Nag, T.-H. Ke, S. Schols, J. Genoe, G. Gielen, and P. Heremans, “High-performance a-In-Ga-Zn-O Schottky diode with oxygen-treated metal contacts,” Appl. Phys. Lett., vol. 101, no. 11, pp. 113505-1–113505-5, 2012.
[4] D. H. Lee, K. Nomura, T. Kamiya, and H. Hosono, “Diffusion-limited a-IGZO/Pt Schottky junction fabricated at 200 oC on a flexible substrate,” IEEE Electron Device Lett., vol. 32, no. 12, pp. 1695–1697, 2011.
[5] J. Kaczmarski, J. Grochowski, E. Kaminska, A. Taube, J. Dyczewski, W. Jung, E. Dynowska, and A. Piotrowska, “Transparent amorphous Ru-Si-O Schottky contacts to In-Ga-Zn-O,” J. Disp. Technol, vol. 11, no. 6, pp. 528–532, 2015.
[6] H. Kim, S. Kim, K.-K. Kim, S.-N. Lee, and K.-S. Ahn, “Electrical characteristics of Pt Schottky contacts fabricated on amorphous gallium indium zinc oxides,” Jpn. J. Appl. Phys., vol. 50, no. 10, pp. 105702-1–105702-3, 2011.
[7] G. H. Heilmeier, L. A. Zanoni, and L. A. Barton, “Dynamic scattering: A new electrooptic effect in certain classes of nematic liquid crystals,” Proc. IEEE, vol. 56, no. 7, pp. 1162–1171, 1968.
[8] T. P. Brody, J. A. Asars, and G. D. Dixon, “A 6 × 6 inch 20 lines-per-inch liquid-crystal display panel,” IEEE Trans. Electron Devices, vol. 20, no. 11, pp. 995–1001, 1973.
[9] H. Kimura, T. Maeda, T. Tsunashima, T. Morita, H. Murata, S. Hirota, and, H. Sato, “A 2.15 inch QCIF reflective color TFT-LCD with digital memory on glass (DMOG),” Proceedings of the SID, vol. 32, no. 1, pp. 268–270, 2001.
[10] S. B. Ogale, Thin films and heterostructures for oxide for oxide electronics, New York, NY: Springer, 2005.
[11] C. Jagadish and S. Pearton, Zinc oxide bulk, thin films and nanostructure, Oxford, UK: Elsevier, 2006.
[12] Ü. Özgür, Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Doğan,V. Avrutin, S. J. Cho, and H. Morkoç, “A comprehensive review of ZnO materials and devices,” J. Appl. Phys., vol. 98, no. 4, pp. 041301-1–041301-103, 2005.
[13] A. Janotti and C. G. Van de Walle, “Fundamentals of zinc oxide as a semiconductor,” Rep. Prog. Phys., vol. 72, no. 12, pp. 126501-1–126501-29, 2009.
[14] William Burton Pearson, Pierre Villars, Lauriston D. Calvert, Pearson's handbook of crystallographic data for intermetallic phases, American Society for Metals, 1985.
[15] D. J. Leary, J. O. Barnes, and A. G. Jordan, “Calculation of carrier concentration in polycrystalline films as a function of surface acceptor state density: application for ZnO gas sensors,” J. Electrochem. Soc, vol. 129, no. 6, pp. 1382–1386, 1982.
[16] G. Neumann, “On the defect structure of zinc-doped zinc oxide,” Phys. Status Solids(b), vol. 105, no. 2, pp. 605–612, 1981.
[17] H. Hosono, “Ionic amorphous oxide semiconductors: Material design, carrier transport, and device application,” J. Non-Cryst. Solids, vol. 352, no. 9, pp. 851–858, 2006.
[18] T. Kamiya, K. Nomura, and H. Hosono, “Origins of high mobility and low operation voltage of amorphous oxide TFTs: Electronic structure, electron transport, defects and doping,” J. Disp. Technol., vol. 5, no. 12, pp. 273–288, 2009.
[19] K. Nomura, A. Takagi, T. Kamiya, H. Ohta, M. Hirano, and H. Hosono, “Amorphous oxide semiconductors for high-performance flexible thin-film transistors,” Jpn. J. Appl. Phys., vol. 45, no. 5B, pp. 4303–4308, 2006.
[20] T. C. Fung, C. S. Chuang, K. Nomura, H. P. D. Shieh, H. Hosono, and J. Kanicki, “Photofield-effect in amorphous In-Ga-Zn-O (a-IGZO) thin-film transistors,” Journal of Information Display, vol. 9, no. 4, pp. 21–29, 2008.
[21] M. Kim, J. H. Jeong, H. J. Lee, T. K. Ahn, H. S. Shin, J.-S. Park, Jae Kyeong Jeong, Y.-G. Mo, and H. D. Kim, “High mobility bottom gate InGaZnO thin film transistors with SiOx etch stopper,” App. Phy. Lett., vol. 90, no. 21, pp. 212114-1–212114-3, 2007.
[22] C.-S Chuang, T.-C Fung, B. G. Mullins, K. Nomura, T. Kamiya, H.-P. D. Shieh, H. Hosono, and J. Kanicki, “Photosensitivity of amorphous IGZO TFTs for active-matrix flat-panel displays,” SID Int. Symp. Digest Tech. Papers, vol. 39, no. 1, pp. 1215–1218, 2008.
[23] N. C. Su, S. J. Wang, and A. Chin, “High-performance InGaZnO thin-film transistors using HfLaO gate dielectric” IEEE Electron Device Lett., vol. 30, no. 12, pp. 1317–1319, 2009.
[24] K. W. Lee, K. Y. Heo, S. H. Oh, A. Moujoud, G. H. Kim, and H. J. Kim, “Thin film transistors by solution-based indium gallium zinc oxide/carbon nanotubes blend,” Thin Solid Films, vol. 517, no. 14, pp. 4011–4014, 2009.
[25] B. Cheng, M. C. Cao, R. Rao, A. Inani, P. V. Voorde, W. M. Greene, J. M. Stork, M. Zeitzoff, and J. C. Woo, “The impact of high-κ gate dielectrics and metal gate electrodes on sub-100 nm MOSFETs,” IEEE Trans. Electron Devices, vol. 46, no. 7, pp. 1537–1544, 1999.
[26] V. Mikhelashvili, and G. Eisenstein, “Effects of annealing conditions on optical and electrical characteristics of titanium dioxide films deposited by electron beam evaporation,” Appl. Phys. Lett., vol. 89, no. 6, pp. 3256–3269, 2001.
[27] M. H. Cho, Y. S. Roh, C. N. Whang, K. Jeong, S. W. Nahm, D. H. Ko, J. H. Lee, N. I. Lee, and K. Fujihara, “Thermal stability and structural characteristics of HfO2 films on Si (100) grown by atomic-layer deposition,” Appl. Phys. Lett., vol. 81, no. 3, pp. 472–474, 2002.
[28] S. M. Hu, “Stress-related problems in silicon technology,” J. Appl. Phys. , vol. 70, no. 6, pp. 53–80, 1991.
[29] T. M. Klein, D. Niu, W. S. Epling, W. Li, D. M. Maher, C. C. Hobbs, R. I. Hegde, I. J. R. Baumvol, and G. N. Parsons, “Evidence of aluminum silicate formation during chemical vapor deposition on amorphous Al2O3 thin films on Si (100),” Appl. Phys. Lett., vol. 75, no. 25, pp. 4001–4003, 1999.
[30] H. F. Luan, S. J. Lee, S. C. Song, Y. L. Mao, Y. Senzaki, D. Roverts, and D. L. Kwong, “High quality Ta2O5 gate dielectrics with Tox,eq<10Å,” IEDM Tech. Dig., pp. 141–142, 1999.
[31] K. J. Hubbard, and D. G. Schlom, “Thermodynamic stability of binary oxides in contact with silicon,” J. Mater. Res., vol. 11, no. 11, pp. 2757–2776, 1996.
[32] Y. Nishi, “Insulated gate field effect transistor and its manufacturing method,” Patent 587 527, 1970.
[33] M. P. Lepselter and S. M. Sze, “SB-IGFET: An insulated-gate field-effect transistor using Schottky barrier contacts for source and drain,” Proc. IEEE, vol. 56, no. 8, pp. 1400–1402, 1968.
[34] J. M. Larson and J. P. Snyder, “Overview and status of metal S/D Schottky-barrier MOSFET technology,” IEEE Trans. Electron Devices, vol. 53, no. 5, pp. 1048–1058, 2006.
[35] S. Heinze, J. Tersoff, R. Martel, V. Derycke, J.Appenzeller, and P. Avouris “Carbon nanotubes as Schottky barrier transistors.” Phys. Rev. Lett., vol. 89, no. 10, pp. 106801-1–106801-4, 2002.
[36] F. Balon and J. M. Shannon, “Analysis of Schottky barrier source-gated transistors in a-Si:H,” Solid-State Electronics., vol. 50, no. 3, pp. 378–383, 2006.
[37] K.-L. Yeh, H.-C. Lin, R.-W. Tsai, M. H. Lee, and T.-Y. Huang, “Fabrication and characterization of Schottky barrier polysilicon thin-film transistors with Excimer-laser crystallized channel,” Jpn. J. Appl. Phys., vol. 42, part 1, no. 4B, pp. 2127–2131, 2003.
[38] A. M. Ma, M. Gupta, F.R. Chowdhury, M. Shen, K. Bothe, K. Shankar, Y. Tsui, and D.W. Barlage, “Zinc oxide thin film transistors with Schottky source barriers,” Solid-State Electronics., vol. 76, pp. 104–108, 2012.
[39] A. H. Adl, A. Ma, M. Gupta, M. Benlamri, Y. Y. Tsui, D.W. Barlage, and K. Shankar, “Schottky barrier thin film transistors using solution-processed n-ZnO,” ACS Appl. Mater. Interfaces., vol. 4, no. 3, pp. 1423–1428, 2012.
[40] T. T. Trinh, K. Jang, V. A. Dao, and J.Yi, “Effect of high conductivity amorphous InGaZnO active layer on the field effect mobility improvement of thin film transistors,” J. Appl. Phys., vol. 116, no. 21, pp. 214504-1–214504-5, 2014.
[41] A. M. Ma, M. Gupta, A. Afshar, G. Shoute, Y. Y. Tsui, K.C. Cadien, and D.W. Barlage, “Schottky barrier source-gated ZnO thin film transistors by low temperature atomic layer deposition,” Appl. Phys. Lett., vol. 103, no. 25, pp. 253503-1–253503-5, 2013.
[42] H. Norde, “A modified forward IV plot for Schottky diodes with high series resistance,” J. Appl. Phys., vol. 50, no. 7, pp. 5052–5053, 1979.
[43] C.-D. Lien, F. C. T. So, and M.-A. Nicolet, “An improved forward I-V method for nonideal Schottky diodes with high series resistance,” IEEE Trans. Electron Devices, vol. ED-31, no. 10, pp. 1502–1503, 1984.
[44] K. Sato and Y. Yasumura, “Study of forward IV plot for Schottky diodes with high series resistance,” J. Appl. Phys., vol. 58, no. 9, pp. 3655–3657, 1985.
[45] S. C. Sun and J. D. Plummer, “Electron mobility in inversion and accumulation layers on thermally oxidized silicon surfaces,” IEEE Trans. Electron Devices, vol. ED-27, no. 8, pp. 1497–1508, 1980.
[46] B. E. Coss, W.-Y. Loh, R. M. Wallace, J. Kim, P. Majhi, and R. Jammy, “Near band edge Schottky barrier height modulation using high- κ dielectric dipole tuning mechanism,” Appl. Phys. Lett., vol. 95, no. 22, pp. 222105-1–222105-3, 2009.
[47] K.-H. Choi and H.-K. Kim, “Correlation between Ti source/drain contact and performance of InGaZnO-based thin film transistors,” Appl. Phys. Lett., vol. 102, no. 5, pp. 052103-1–052103-5, 2013.