| 研究生: |
王荏鴻 Wang, Jen-Hung |
|---|---|
| 論文名稱: |
動物用抗生素於畜牧廢水好氧處理程序吸附、吸收效應探討與生物降解潛勢評估 Sorption and biodegradation of veterinary antibiotics in livestock wastewater treatment process |
| 指導教授: |
黃良銘
Whang, Liang-Ming 陳婉如 Chen, Wan-Ru |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 環境工程學系 Department of Environmental Engineering |
| 論文出版年: | 2015 |
| 畢業學年度: | 103 |
| 語文別: | 英文 |
| 論文頁數: | 103 |
| 中文關鍵詞: | 磺胺類抗生素 、四環黴素 、畜牧廢水 、吸附 、生物降解 、活性汙泥 |
| 外文關鍵詞: | Sulfonamide antibiotics, Tetracycline antibiotics, Livestock wastewater, Adsorption, Biodegradation, Activated sludge |
| 相關次數: | 點閱:131 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在近幾年來已有許多研究中指出,在自然環境中像是地下水,河川,土壤以及底泥等都檢出不同種類的抗生素,因而引起了學者的關注,如果抗生素長期在環境當中,便會造成選擇性的壓力致使具有抗藥性的微生物甚至是超級細菌的產生,其潛在的問題不只造成人類健康的影響,更可能對整個生態系造成嚴重的危害。磺胺類抗生素與四環素類抗生素因其藥效廣及價格低廉,因此常用於獸藥及畜牧業作為預防及促進生長用途,但也因此常於環境中檢出。
本研究針對兩座畜牧廢水處理廠進行調查,定期檢測四環素類、磺胺類、林可醯胺類以及巨環黴素類共十種抗生素在各處理單元之出現頻率以及去除情形做探討;架設兩個實驗室規模之SBR反應槽以模擬實場之處理狀況,一個定期添加磺胺類抗生素使汙泥長期暴露於高濃度的抗生素下,而另一個未添加抗生素作為實驗對照組;除此之外,在傳統畜牧廢水好氧處理程序當中,抗生素會與許多物質接觸像是廢水以及汙泥,因此以批次試驗釐清各物質分別對抗生素的影響為何。以四種常用的磺胺類抗生素sulfadiazine (SDZ)、sulfathiazole (STZ)、sulfamerazine (SMR)與sulfamethoxazole (SMX)來了解傳統生物處理程序中,其吸附、吸收效應與生物降解能力;此外,三種四環素類抗生素tetracycline (TC)、oxytetracycline (OTC)、chlortetracycline (CTC)被選用以了解吸附特性並與磺胺類抗生素做比較。
在批次試驗中的結果顯示,畜牧廢水並不會對於四種磺胺類造成吸附或是分析上的影響,而四環素類抗生素則會被吸附於畜牧廢水,而在汙泥與抗生素吸附的測試當中,僅發現STZ的濃度有少許的下降,SDZ,SMR和SMX皆未發現與汙泥之間有吸附行為,而四環素類抗生素則會大量且快速的被汙泥吸附。在生物降解的測試結果顯示,長期暴露於磺胺類抗生素之汙泥,具有較強的生物降解抗生素的能力,SDZ,STZ和SMR的降解速率較為相似,而在SMX的實驗中則明顯發現有較慢的降解速率,而當四種磺胺類抗生素同時存在時,其降解速率則為STZ>SMR>SDZ>SMX,而在生物降解四環素類抗生素的結果顯示,實驗前期主要為快速的吸附,而在吸附平衡後則未發現明顯的降解,並且仍有殘餘抗生素說明了抗生素並未被汙泥所降解,除此之外,本研究也同時測試了缺氧及厭氧環境下,汙泥降解抗生素的狀況,其結果發現汙泥仍能降解磺胺類抗生素,但其降解所需時間普遍較好氧要長,降解狀況也較為不穩定。
The occurrence and fate of antibiotics in environment, including surface water, groundwater, and soils has drawn great attention of researchers all over the world in recent years. The persistence of antibiotics in the aquatic environment exerts a selective pressure on autochthonous bacterial communities, which eventually poses risks to the ecosystem and human health. The occurrences and the removal efficiencies of four groups of antibiotics in two livestock wastewater treatment plants, including tetracyclines, sulfonamides, lincosamides, and macrolides, were analyzed regularly for long-term monitoring. Two lab-scale aerobic SBR were built to simulate aerobic treatment condition. One was regularly fed with four sulfonamides and the other was used as control group without providing additional antibiotics. In addition, batch tests were used to clarify how the antibiotics interact with the matrix in the wastewater. In this study, the adsorption behavior and biodegradation of sulfadiazine (SDZ), sulfathiazole (STZ), sulfamerazine (SMR) and sulfamethoxazole (SMX) on activated sludge were investigated. Tetracycline (TC), oxytetracycline (OTC) and chlortetracycline (CTC) were chosen to compare adsorption characteristic with sulfonamides. The results of batch tests showed that four sulfonamides were not interrupted by the wastewater on instrument analysis. However, tetracyclines were significantly adsorbed by livestock wastewater. In the test of sludge adsorption, little adsorption was observed for sulfonamides, but rapid and significant adsorption was observed for tetracyclines. In the tests of biodegradation, sulfonamides could be completely removed by the enriched sludge which was fed with sulfonamides for a long time, but it was found that tetracyclines were not degraded during tests. Overall, this study could help to clarify the fate and behavior of sulfonamide and tetracyclines in the activated sludge process and assess consequent environmental risks arising from sludge disposal as well.
Achari, A., Champness, J. N., Bryant, P. K., Rosemond, J. and Stammers, D. K. (1997). Crystal structure of the anti-bacterial sulfonamide drug target dihydropteroate synthase. Nature Structural & Molecular Biology, 4(6), 490-497.
Al-Ahmad, A., Daschner, F. and Kümmerer, K. (1999). Biodegradability of cefotiam, ciprofloxacin, meropenem, penicillin G, and sulfamethoxazole and inhibition of waste water bacteria. Archives of Environmental Contamination and toxicology, 37(2), 158-163.
Alexy, R., Kümpel, T. and Kümmerer, K. (2004). Assessment of degradation of 18 antibiotics in the closed bottle test. Chemosphere, 57(6), 505-512.
Baquero, F., Martínez, J.-L. and Cantón, R. (2008). Antibiotics and antibiotic resistance in water environments. Current opinion in biotechnology, 19(3), 260-265.
Bartelt-Hunt, S., Snow, D. D., Damon-Powell, T. and Miesbach, D. (2011). Occurrence of steroid hormones and antibiotics in shallow groundwater impacted by livestock waste control facilities. Journal of Contaminant Hydrology, 123(3), 94-103.
Batt, A. L., Kim, S. and Aga, D. S. (2006). Enhanced biodegradation of iopromide and trimethoprim in nitrifying activated sludge. Environmental science & technology, 40(23), 7367-7373.
Běhal, V. (2001). Nontraditional microbial bioactive metabolites. Folia microbiologica, 46(5), 363-370.
Ben, W., Qiang, Z., Pan, X. and Chen, M. (2009). Removal of veterinary antibiotics from sequencing batch reactor (SBR) pretreated swine wastewater by Fenton's reagent. Water research, 43(17), 4392-4402.
Ben, W., Qiang, Z., Yin, X., Qu, J. and Pan, X. (2014). Adsorption behavior of sulfamethazine in an activated sludge process treating swine wastewater. Journal of Environmental Sciences, 26(8), 1623-1629.
Bermingham, A. and Derrick, J. P. (2002). The folic acid biosynthesis pathway in bacteria: evaluation of potential for antibacterial drug discovery. Bioessays, 24(7), 637-648.
Boxall, A. B., Kolpin, D. W., Halling-Sørensen, B. and Tolls, J. (2003). Peer reviewed: are veterinary medicines causing environmental risks? Environmental science & technology, 37(15), 286A-294A.
Bradford, S. A., Segal, E., Zheng, W., Wang, Q. and Hutchins, S. R. (2008). Reuse of concentrated animal feeding operation wastewater on agricultural lands. Journal of Environmental Quality, 37(5_Supplement), S-97-S-115.
Bureau of National Health Insurance 2009, Bureau of National Health Insurance E-Paper, Department of Health, Executive Yuan, 121
Burkholder, J., Libra, B., Weyer, P., Heathcote, S., Kolpin, D., Thome, P. S. and Wichman, M. (2007). Impacts of waste from concentrated animal feeding operations on water quality. Environmental health perspectives, 308-312.
Cabello, F. C. (2006). Heavy use of prophylactic antibiotics in aquaculture: a growing problem for human and animal health and for the environment. Environmental microbiology, 8(7), 1137-1144.
Carballa, M., Fink, G., Omil, F., Lema, J. M. and Ternes, T. (2008). Determination of the solid–water distribution coefficient (K d) for pharmaceuticals, estrogens and musk fragrances in digested sludge. Water research, 42(1), 287-295.
Chang S-C, Chen M-W, Lin M-C, Hu Y-P 2003, Antibiotic Consumption in Human and Animals in Taiwan, Infection Control, 13(6) pp.334-345.
Chelme-Ayala, P., El-Din, M. G., Smith, R., Code, K. R. and Leonard, J. (2011). Advanced treatment of liquid swine manure using physico-chemical treatment. Journal of hazardous materials, 186(2), 1632-1638.
Chen, W., Westerhoff, P., Leenheer, J. A. and Booksh, K. (2003). Fluorescence excitation-emission matrix regional integration to quantify spectra for dissolved organic matter. Environmental science & technology, 37(24), 5701-5710.
Cheng, J. (2003). Challenges of CAFO waste management. Journal of Environmental Engineering, 129(5), 391-392.
Chiou, H.-S. (2011) Distribution of Antibiotics from the Wastewater Treatment Plant of Swine Farm, Master Thesis, Department of Environmental Science and Engineering, National Pingtung University of Science and Technology.
Clara, M., Kreuzinger, N., Strenn, B., Gans, O. and Kroiss, H. (2005). The solids retention time—a suitable design parameter to evaluate the capacity of wastewater treatment plants to remove micropollutants. Water research, 39(1), 97-106.
Cromwell, G. L. (2002). Why and how antibiotics are used in swine production. Animal biotechnology, 13(1), 7-27.
Cronk, J. K. (1996). Constructed wetlands to treat wastewater from dairy and swine operations: a review. Agriculture, ecosystems & environment, 58(2), 97-114.
Customs Administration (2013) Trade Statistics Search, Ministry of Finance, [online]. https://portal.sw.nat.gov.tw/APGA/GA03
Daughton, C. G. (2004). Non-regulated water contaminants: emerging research. Environmental Impact Assessment Review, 24(7), 711-732.
Daughton, C. G. and Ternes, T. A. (1999). Pharmaceuticals and personal care products in the environment: agents of subtle change? Environmental health perspectives, 107(Suppl 6), 907.
Dibner, J. and Richards, J. (2005). Antibiotic growth promoters in agriculture: history and mode of action. Poultry science, 84(4), 634-643.
Drewes, J. E., Hemming, J., Ladenburger, S. J., Schauer, J. and Sonzogni, W. (2005). An assessment of endocrine disrupting activity changes during wastewater treatment through the use of bioassays and chemical measurements. Water Environment Research, 12-23.
EPA, Taiwan (2013) Year book of environmental protection statistics, pp.2-188,189.
Evolution, Paleontology's Understanding (2003) Antibiotic resistance. University of California Museum.
FEDESA, European Federation of Animal Health.(2001) Antibiotic Use in Farm Animals does not threaten Human Health. FEDESA/FEFANA Press release, Brussels
Göbel, A., Thomsen, A., McArdell, C. S., Joss, A. and Giger, W. (2005). Occurrence and sorption behavior of sulfonamides, macrolides, and trimethoprim in activated sludge treatment. Environmental science & technology, 39(11), 3981-3989.
Gao, P., Munir, M. and Xagoraraki, I. (2012). Correlation of tetracycline and sulfonamides with corresponding resistance genes and resistant bacteria in a conventional municipal wastewater treatment plant. Science of the Total Environment, 421, 173-183.
Gartiser, S., Urich, E., Alexy, R. and Kümmerer, K. (2007). Ultimate biodegradation and elimination of antibiotics in inherent tests. Chemosphere, 67(3), 604-613.
Gaskins, H., Collier, C. and Anderson, D. (2002). Antibiotics as growth promotants: mode of action. Animal biotechnology, 13(1), 29-42.
Gu C.-C. (2006) 13種動物用藥檢驗暨中區五縣市境內市售畜禽肉品、乳品及蛋類中藥物殘留量調查,苗栗縣衛生局檢驗課.
Haller, M. Y., Müller, S. R., McArdell, C. S., Alder, A. C. and Suter, M. J.-F. (2002). Quantification of veterinary antibiotics (sulfonamides and trimethoprim) in animal manure by liquid chromatography–mass spectrometry. Journal of Chromatography A, 952(1), 111-120.
Halling-Sørensen, B. (2000). Algal toxicity of antibacterial agents used in intensive farming. Chemosphere, 40(7), 731-739.
Halling-Sørensen, B., Nielsen, S. N., Lanzky, P., Ingerslev, F., Lützhøft, H. H. and Jørgensen, S. (1998). Occurrence, fate and effects of pharmaceutical substances in the environment-A review. Chemosphere, 36(2), 357-393.
Heberer, T. (2002). Tracking persistent pharmaceutical residues from municipal sewage to drinking water. Journal of Hydrology, 266(3), 175-189.
Heddini, Andreas, Cars, Otto, Qiang, Sun & Tomson, Göran (2009), "Antibiotic resistance in China—a major future challenge," The Lancet, 373(9657) pp.30.
Heidler, J. and Halden, R. U. (2007). Mass balance assessment of triclosan removal during conventional sewage treatment. Chemosphere, 66(2), 362-369.
Hiscock, K. M. and Grischek, T. (2002). Attenuation of groundwater pollution by bank filtration. Journal of Hydrology, 266(3), 139-144.
Hudson, N., Baker, A. and Reynolds, D. (2007). Fluorescence analysis of dissolved organic matter in natural, waste and polluted waters—a review. River Research and Applications, 23(6), 631-649.
Ingerslev, F. and Halling-Sørensen, B. (2001). Biodegradability of metronidazole, olaquindox, and tylosin and formation of tylosin degradation products in aerobic soil–manure slurries. Ecotoxicology and environmental safety, 48(3), 311-320.
Ingerslev, F., Toräng, L., Loke, M.-L., Halling-Sørensen, B. and Nyholm, N. (2001). Primary biodegradation of veterinary antibiotics in aerobic and anaerobic surface water simulation systems. Chemosphere, 44(4), 865-872.
J.G. Hardman, L.E. Limbird, A. Gilman Goodman & Gilman’s (2001) The Pharmacological Basis of Therapeutics (10th ed.)McGraw-Hill, New York (2001) pp. 1171–1173.
Kümmerer, K. (2009). Antibiotics in the aquatic environment–a review–part I. Chemosphere, 75(4), 417-434.
Kümmerer, K. (2009). Antibiotics in the aquatic environment–a review–part II. Chemosphere, 75(4), 435-441.
Kümmerer, K., Al-Ahmad, A. and Mersch-Sundermann, V. (2000). Biodegradability of some antibiotics, elimination of the genotoxicity and affection of wastewater bacteria in a simple test. Chemosphere, 40(7), 701-710.
Kolpin, D. W., Furlong, E. T., Meyer, M. T., Thurman, E. M., Zaugg, S. D., Barber, L. B. and Buxton, H. T. (2002). Pharmaceuticals, hormones, and other organic wastewater contaminants in US streams, 1999-2000: a national reconnaissance. Environmental science & technology, 36(6), 1202-1211.
Li, D., Wu, Y., Feng, L. and Zhang, L. (2012). Surface properties of SAC and its adsorption mechanisms for phenol and nitrobenzene. Bioresource technology, 113, 121-126.
Li Z, Wang YJ. Status (2009) Problems and countermeasures of antibiotic use in livestock agriculture, China Animal Health, 9 pp.55-57.
Lin, A. Y.-C., Yu, T.-H. and Lateef, S. K. (2009). Removal of pharmaceuticals in secondary wastewater treatment processes in Taiwan. Journal of hazardous materials, 167(1), 1163-1169.
Lin, A. Y.-C., Yu, T.-H. and Lin, C.-F. (2008). Pharmaceutical contamination in residential, industrial, and agricultural waste streams: risk to aqueous environments in Taiwan. Chemosphere, 74(1), 131-141.
Liu, H. and Fang, H. H. (2002). Extraction of extracellular polymeric substances (EPS) of sludges. Journal of Biotechnology, 95(3), 249-256.
Liu, J.-L. and Wong, M.-H. (2013). Pharmaceuticals and personal care products (PPCPs): a review on environmental contamination in China. Environment international, 59, 208-224.
Liu, P.-C. (2002) Temporal and Spatial Trends of Livestock Waste Nutrients to Assimilative Capacity of Farmland in Chang-Hwa, Department for Sustainable Environment, National Taiwan University.
Liu, Z.-X., Chen, Q.-M., Zhang, C.-Z., Zhang W.-F., Zhang S.-G.,Guo Z.-Z., Lin, Z.-X., Zhu, C.-Y. (2008) 豬隻常用動物用藥品-使用手冊,行政院農業委員會動植物防疫檢疫局,財團法人台灣度物科技研究所.
Maren, T. H. (1976). Relations between structure and biological activity of sulfonamides. Annual review of pharmacology and toxicology, 16(1), 309-327.
Margesin, R. and Schinner, F. (2001). Biodegradation and bioremediation of hydrocarbons in extreme environments. Applied microbiology and biotechnology, 56(5-6), 650-663.
Neyens, E., Baeyens, J. and Dewil, R. (2004). Advanced sludge treatment affects extracellular polymeric substances to improve activated sludge dewatering. Journal of hazardous materials, 106(2), 83-92.
Obaja, D., Mace, S., Costa, J., Sans, C. and Mata-Alvarez, J. (2003). Nitrification, denitrification and biological phosphorus removal in piggery wastewater using a sequencing batch reactor. Bioresource technology, 87(1), 103-111.
Onesios, K. M., Jim, T. Y. and Bouwer, E. J. (2009). Biodegradation and removal of pharmaceuticals and personal care products in treatment systems: a review. Biodegradation, 20(4), 441-466.
Pérez, S., Eichhorn, P. and Aga, D. S. (2005). Evaluating the biodegradability of sulfamethazine, sulfamethoxazole, sulfathiazole, and trimethoprim at different stages of sewage treatment. Environmental Toxicology and Chemistry, 24(6), 1361-1367.
Pandey, A., Rajput, K., Bhatt, S. M. and Rai, D. (2013). Evaluation of Antibacterial Activity of Actinobacteria Isolated from Soil Sample. International Journal of Pharmaceutical Research & Allied Sciences, 2(2).
Prado, N., Ochoa, J. and Amrane, A. (2009). Biodegradation and biosorption of tetracycline and tylosin antibiotics in activated sludge system. Process Biochemistry, 44(11), 1302-1306.
Quan, X., Ye, C., Xiong, Y., Xiang, J. and Wang, F. (2010). Simultaneous removal of ammonia, P and COD from anaerobically digested piggery wastewater using an integrated process of chemical precipitation and air stripping. Journal of hazardous materials, 178(1), 326-332.
Riviere, J. and Spoo, J. (1995). Tetracyclines. Veterinary pharmacology and therapeutics, 8.
Roh, H., Subramanya, N., Zhao, F., Yu, C.-P., Sandt, J. and Chu, K.-H. (2009). Biodegradation potential of wastewater micropollutants by ammonia-oxidizing bacteria. Chemosphere, 77(8), 1084-1089.
Sarmah, A. K., Meyer, M. T. and Boxall, A. B. (2006). A global perspective on the use, sales, exposure pathways, occurrence, fate and effects of veterinary antibiotics (VAs) in the environment. Chemosphere, 65(5), 725-759.
Scientists, Union of Concerned (2001) 70 Percent of all Antibiotics Given to Healthy Live-stock.
Suarez, S., Lema, J. M. and Omil, F. (2010). Removal of pharmaceutical and personal care products (PPCPs) under nitrifying and denitrifying conditions. Water Research, 44(10), 3214-3224.
Tain, C.-P. (2001) The Denitrification and Phosphorous Removal Performance in AO / AOAO Wastewater Treatment System by the Addition of Bioimmobilization Support Matrix, Master Thesis, Department of Safety Health and Environmental Engineering, National Yunlin Unerversity of Science and Technology.
Tenson, T., Lovmar, M. and Ehrenberg, M. (2003). The mechanism of action of macrolides, lincosamides and streptogramin B reveals the nascent peptide exit path in the ribosome. Journal of molecular biology, 330(5), 1005-1014.
Ternes, T. A. (1998). Occurrence of drugs in German sewage treatment plants and rivers. Water research, 32(11), 3245-3260.
Thiele‐Bruhn, S. (2003). Pharmaceutical antibiotic compounds in soils–a review. Journal of Plant Nutrition and Soil Science, 166(2), 145-167.
USEPA (2012) Pharmaceuticals and Personal Care Products (PPCPs) [online]. http://www.epa.gov/ppcp/
Verlicchi, P., Al Aukidy, M. and Zambello, E. (2012). Occurrence of pharmaceutical compounds in urban wastewater: removal, mass load and environmental risk after a secondary treatment—a review. Science of the Total Environment, 429, 123-155.
WATSON, S. W. (1971). Taxonomic considerations of the family Nitrobacteraceae Buchanan requests for opinions. International Journal of Systematic Bacteriology, 21(3), 254-270.
WIETHAN, J., Al-Ahmad, A., Henninger, A. and KÜMMERER, K. (2000). Simulation des Selektionsdrucks der Antibiotika Ciprofloxacin und Ceftazidim in Oberflächengewässern mittels klassischer Methoden. Vom Wasser, 95, 107-118.
Wise, R. (2002). Antimicrobial resistance: priorities for action. Journal of Antimicrobial Chemotherapy, 49(4), 585-586.
Witte, W. (1998). Medical consequences of antibiotic use in agriculture. Science, 279(5353), 996-997.
Witte, W. (2000). Selective pressure by antibiotic use in livestock. International Journal of Antimicrobial Agents, 16, 19-24.
Xu, W.-h., Zhang, G., Zou, S.-c., Li, X.-d. and Liu, Y.-c. (2007). Determination of selected antibiotics in the Victoria Harbour and the Pearl River, South China using high-performance liquid chromatography-electrospray ionization tandem mass spectrometry. Environmental Pollution, 145(3), 672-679.
Yang, C.-L. (2014) Removal of tetracyclines in aerobic swine wastewater treatment process, Master Thesis, Department of Environmental Engineering, National Cheng Kung University.
Zhang Y.-K. (2005) 動物用藥品使用準則簡介,行政院農業委員會動植物防疫檢疫局,農政與農情.
Zheng, Y & Zhou, Z (2007) The root causes of the abuse of antibiotics, harm and the rational use of the strategy. Hospital Management Forum, 123 pp. 23-27
Zwiener, C., Glauner, T. and Frimmel, F. H. (2000). Biodegradation of pharmaceutical residues investigated by SPE‐GC/ITD‐MS and on‐line derivatization. Journal of High Resolution Chromatography, 23(7‐8), 474-478.