| 研究生: |
賴妍君 Lai, Yan-Jun |
|---|---|
| 論文名稱: |
不同發炎刺激對活化嗜中性球的分子機轉研究 Molecular mechanisms of different priming stimuli for neutrophil activation |
| 指導教授: |
謝奇璋
Shieh, Chi-Chang 黃朝慶 Huang, Chao-Ching |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 分子醫學研究所 Institute of Molecular Medicine |
| 論文出版年: | 2006 |
| 畢業學年度: | 94 |
| 語文別: | 英文 |
| 論文頁數: | 72 |
| 中文關鍵詞: | 嗜中性白血球 、priming 、C反應蛋白 、NADPH氧化酵素 、活性氧分子 |
| 外文關鍵詞: | NADPH oxidase, C-reactive protein, ROS, priming, neutrophil |
| 相關次數: | 點閱:111 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
嗜中性白血球(neutrophils)在病菌入侵人體時會引發一連串的反應,呼吸爆發(respireatory burst)是嗜中性白血球徹底清除病菌的最後一個步驟。呼吸爆發發生在嗜中性白血球中的一個酵素系統—NADPH oxidese中。NADPH oxidase主要包含細胞膜嵌合蛋白質分子(gp91phox和p22phox),以及位在細胞質內的蛋白質分子(p47phox, p67phox, p40phox)。活化態的NADPH oxidase會促使氧氣(O2)瞬間還原成超氧化物(superoxide, O2–)以及其他的各種具有毒性的ROS (reactive oxygen species)。許多研究指出,呼吸爆發過程中所產生的ROS除了具有清除病菌以及調控免疫反應的功能外,也有可以對鄰近的組織造成傷害。因此,過多或過少的ROS對於人體皆會造成傷害。嗜中性白血球具有多種不同的型態,priming是其中的一種,當嗜中性白血球處於這種狀態下,第二次的刺激物作用後會引發更大量的ROS產生。目前已經發現許多激素可以當作priming agent以使得嗜中性白血球處於此種priming的狀態下。假如我們將priming作用過程中的分子機制研究清楚,我們將可以用priming agent或是其抑制物還控制體內ROS的量。C-reactive protein (CRP)是一種急性期反應蛋白(acute-phase protein),目前也已經發現它在ROS生成過程中扮演了一些角色。有些研究指出它會增加ROS的生成,但也有些研究持相反的意見。在本研究中,我們假設CRP是一個priming agent,並且試圖描繪出其中的分子機制,更進一步的想要瞭解為何CRP會同時具有增加和減少ROS生成的能力。首先,我們證實了CRP就像GM-CSF和LPS一般,的確具有priming的功效,並且與其他兩種priming agent相較之下,可以引發最大量的ROS產生,並且增加p47phox磷酸化的表現量,但細胞表面的cytochrome b558表現量並沒有因為受到CRP priming的作用而增加。而當CRP的濃度大於30μg/ml,原先會促進ROS生成的能力轉變成輕微的抑制ROS的產生,並且發現到p47phox磷酸化的表現量,和細胞表面的cytochrome b558表現量相較於低濃度的CRP也都有些微減少的情況。因此,我們證實了CRP會透過濃度的轉變,而造成在ROS生成的過程中扮演雙重的角色。透過這篇研究,我們證實了CRP在嗜中性白血球priming的過程中所扮演的角色和其分子機制。
Activated neutrophils respond to stimuli with a characteristic “respiratory burst” which is mediated by NADPH oxidase. NADPH oxidase consists of a membrane bound factors gp91phox, p22phox and the cytosol factors p47phox, p67phox, p40phox. The active NADPH oxidase triggers rapid reduction of oxygen to the superoxide anion (O2-) and other reactive oxygen species (ROS), which is so called respiratory burst. Numerous studies have demonstrated that ROS generated by NADPH oxidase not only kill invading pathogens and modulate immune response, but also damage the adjacent tissues. Therefore, the excess or deficiency of ROS is a danger in our bodies. Priming of ROS is an important phenotype of activated neutrophils. It is defined as enhancement of superoxide generation in response to a second activating stimulus. Many pro-inflammatory cytokines have been referred to as priming agents. If the molecular mechanisms of priming process are clearly defined, we will be able to use priming agents or their inhibitors to control the level of ROS. C-reactive protein (CRP), a membrane of acute-phase proteins, plays some roles on ROS production. Some studies have shown that it can enhance ROS production, but other studies showed it reduces ROS generation. In this study, we recognized CRP as a priming agent and investigated the molecular mechanisms of CRP priming. Furthermore, we tried to demonstrate how CRP enhances and reduces ROS production. At first, we confirmed that CRP, like GM-CSF and LPS, is a priming agent and it can enhance the highest ROS production after secondary stimulus. The p47phox phosphorylation increased in CRP-primed neutrophils, but the expression of cytochrome b558 on cell surface was not affected. We thus demonstrated that CRP primed neutrophils by the increased p47phox phosphorylation. When CRP was in a high concentration (more than 30μg/ml), the increased ROS production was converted to a slightly reduced level. The p47phox phosphorylation and the expression of cytochrome b558 on cell surface also had slightly decreased. Our results indicated that CRP had a concentration dependent dual effect on ROS productionon neutrophils. Through this study, we delineate the role and the molecular mechanism of CRP in the process of neutrophil priming.
Ago, T., Nunoi, H., Ito, T. and Sumimoto, H. (1999) Mechanism for phosphorylation-induced activation of the phagocyte NADPH oxidase protein p47(phox). Triple replacement of serines 303, 304, and 328 with aspartates disrupts the SH3 domain-mediated intramolecular interaction in p47(phox), thereby activating the oxidase. J Biol Chem 274, 33644-53.
Aida, Y. and Pabst, M.J. (1990) Priming of neutrophils by lipopolysaccharide for enhanced release of superoxide. Requirement for plasma but not for tumor necrosis factor-alpha. J Immunol 145, 3017-25.
Babior, B.M. (1978) Oxygen-dependent microbial killing by phagocytes (first of two parts). N Engl J Med 298, 659-68.
Babior, B.M. (1999) NADPH oxidase: an update. Blood 93, 1464-76.
Babior, B.M. (2000) Phagocytes and oxidative stress. Am J Med 109, 33-44.
Babior, B.M., Kipnes, R.S. and Curnutte, J.T. (1973) Biological defense mechanisms. The production by leukocytes of superoxide, a potential bactericidal agent. J Clin Invest 52, 741-4.
Baldridge, C. W., Gerard, R. W. (1933) The extra respiration of phagocytosis. Am. J. Physiol. 103, 235–236.
Beckman, K.B. and Ames, B.N. (1998) The free radical theory of aging matures. Physiol Rev 78, 547-81.
Bharadwaj, D., Stein, M.P., Volzer, M., Mold, C. and Du Clos, T.W. (1999) The major receptor for C-reactive protein on leukocytes is fcgamma receptor II. J Exp Med 190, 585-90.
Borregaard, N. (1985) The respiratory burst of phagocytosis: biochemistry and subcellular localization. Immunol Lett 11, 165-71.
Borregaard, N. (1988) Subcellular localization and dynamics of components of the respiratory burst oxidase. J Bioenerg Biomembr 20, 637-51.
Borregaard, N., Heiple, J.M., Simons, E.R. and Clark, R.A. (1983) Subcellular localization of the b-cytochrome component of the human neutrophil microbicidal oxidase: translocation during activation. J Cell Biol 97, 52-61.
Borregaard, N., Lollike, K., Kjeldsen, L., Sengelov, H., Bastholm, L., Nielsen, M.H. and Bainton, D.F. (1993) Human neutrophil granules and secretory vesicles. Eur J Haematol 51, 187-98.
Boxer, G.J., Curnutte, J.T. and Boxer, L.A. (1985) Polymorphonuclear leukocyte function. Hosp Pract (Off Ed) 20, 69-73, 77, 80 passim.
Brown, G.E., Stewart, M.Q., Bissonnette, S.A., Elia, A.E., Wilker, E. and Yaffe, M.B. (2004) Distinct ligand-dependent roles for p38 MAPK in priming and activation of the neutrophil NADPH oxidase. J Biol Chem 279, 27059-68.
Calafat, J., Kuijpers, T.W., Janssen, H., Borregaard, N., Verhoeven, A.J. and Roos, D. (1993) Evidence for small intracellular vesicles in human blood phagocytes containing cytochrome b558 and the adhesion molecule CD11b/CD18. Blood 81, 3122-9.
Cathcart, R., Schwiers, E. and Ames, B.N. (1983) Detection of picomole levels of hydroperoxides using a fluorescent dichlorofluorescein assay. Anal Biochem 134, 111-6.
Chen Yen-Chun. (2002) Roles of the leukocyte NADPH oxidase in the pathogenesis of ischemic stroke. Master thesis, National Cheng Kung University, etd-0715102-234029
Chiarugi, P., Pani, G., Giannoni, E., Taddei, L., Colavitti, R., Raugei, G., Symons, M., Borrello, S., Galeotti, T. and Ramponi, G. (2003) Reactive oxygen species as essential mediators of cell adhesion: the oxidative inhibition of a FAK tyrosine phosphatase is required for cell adhesion. J Cell Biol 161, 933-44.
Chuang, K.P., Huang, Y.F., Hsu, Y.L., Liu, H.S., Chen, H.C. and Shieh, C.C. (2004) Ligation of lymphocyte function-associated antigen-1 on monocytes decreases very late antigen-4-mediated adhesion through a reactive oxygen species-dependent pathway. Blood 104, 4046-53.
Commoner, B., Townsend, J. and Pake, G.E. (1954) Free radicals in biological materials. Nature 174, 689-91.
Condliffe, A.M., Chilvers, E.R., Haslett, C. and Dransfield, I. (1996) Priming differentially regulates neutrophil adhesion molecule expression/function. Immunology 89, 105-11.
Dang, P.M., Dewas, C., Gaudry, M., Fay, M., Pedruzzi, E., Gougerot-Pocidalo, M.A. and El Benna, J. (1999) Priming of human neutrophil respiratory burst by granulocyte/macrophage colony-stimulating factor (GM-CSF) involves partial phosphorylation of p47(phox). J Biol Chem 274, 20704-8.
DeChatelet, L.R., Shirley, P.S. and Johnston, R.B., Jr. (1976) Effect of phorbol myristate acetate on the oxidative metabolism of human polymorphonuclear leukocytes. Blood 47, 545-54.
DeLeo, F.R. and Quinn, M.T. (1996) Assembly of the phagocyte NADPH oxidase: molecular interaction of oxidase proteins. J Leukoc Biol 60, 677-91.
DeLeo, F.R., Renee, J., McCormick, S., Nakamura, M., Apicella, M., Weiss, J.P. and Nauseef, W.M. (1998) Neutrophils exposed to bacterial lipopolysaccharide upregulate NADPH oxidase assembly. J Clin Invest 101, 455-63.
Dewald, B., Thelen, M. and Baggiolini, M. (1988) Two transduction sequences are necessary for neutrophil activation by receptor agonists. J Biol Chem 263, 16179-84.
Dewas, C., Dang, P.M., Gougerot-Pocidalo, M.A. and El-Benna, J. (2003) TNF-alpha induces phosphorylation of p47(phox) in human neutrophils: partial phosphorylation of p47phox is a common event of priming of human neutrophils by TNF-alpha and granulocyte-macrophage colony-stimulating factor. J Immunol 171, 4392-8.
Downey, G.P., Fukushima, T., Fialkow, L. and Waddell, T.K. (1995) Intracellular signaling in neutrophil priming and activation. Semin Cell Biol 6, 345-56.
Droge, W. (2002) Free radicals in the physiological control of cell function. Physiol Rev 82, 47-95.
El-Benna, J., Dang, P.M., Gougerot-Pocidalo, M.A. and Elbim, C. (2005) Phagocyte NADPH oxidase: a multicomponent enzyme essential for host defenses. Arch Immunol Ther Exp (Warsz) 53, 199-206.
Feng, D., Nagy, J.A., Pyne, K., Dvorak, H.F. and Dvorak, A.M. (1998) Neutrophils emigrate from venules by a transendothelial cell pathway in response to FMLP. J Exp Med 187, 903-15.
Forman, H.J. and Torres, M. (2002) Reactive oxygen species and cell signaling: respiratory burst in macrophage signaling. Am J Respir Crit Care Med 166, S4-8.
Fridovich, I. (1984) Overview: biological sources of O2. Methods Enzymol 105, 59-61.
Ginsel, L.A., Onderwater, J.J., Fransen, J.A., Verhoeven, A.J. and Roos, D. (1990) Localization of the low-Mr subunit of cytochrome b558 in human blood phagocytes by immunoelectron microscopy. Blood 76, 2105-16.
Groemping, Y. and Rittinger, K. (2005) Activation and assembly of the NADPH oxidase: a structural perspective. Biochem J 386, 401-16.
Guthrie, L.A., McPhail, L.C., Henson, P.M. and Johnston, R.B., Jr. (1984) Priming of neutrophils for enhanced release of oxygen metabolites by bacterial lipopolysaccharide. Evidence for increased activity of the superoxide-producing enzyme. J Exp Med 160, 1656-71.
Hallett, M.B. and Lloyds, D. (1995) Neutrophil priming: the cellular signals that say 'amber' but not 'green'. Immunol Today 16, 264-8.
Harman, D. (1956) Aging: a theory based on free radical and radiation chemistry. J Gerontol 11, 298-300.
Harman, D. (1981) The aging process. Proc Natl Acad Sci U S A 78, 7124-8.
Haslett, C., Guthrie, L.A., Kopaniak, M.M., Johnston, R.B., Jr. and Henson, P.M. (1985) Modulation of multiple neutrophil functions by preparative methods or trace concentrations of bacterial lipopolysaccharide. Am J Pathol 119, 101-10.
Heuertz, R.M., Tricomi, S.M., Ezekiel, U.R. and Webster, R.O. (1999) C-reactive protein inhibits chemotactic peptide-induced p38 mitogen-activated protein kinase activity and human neutrophil movement. J Biol Chem 274, 17968-74.
hKhachigian, L.M., Collins, T. and Fries, J.W. (1997) N-acetyl cysteine blocks mesangial VCAM-1 and NF-kappa B expression in vivo. Am J Pathol 151, 1225-9.
Holmes, B., Page, A.R. and Good, R.A. (1967) Studies of the metabolic activity of leukocytes from patients with a genetic abnormality of phagocytic function. J Clin Invest 46, 1422-32.
Huang, J., Hitt, N.D. and Kleinberg, M.E. (1995) Stoichiometry of p22-phox and gp91-phox in phagocyte cytochrome b558. Biochemistry 34, 16753-7.
Jakubowski, W. and Bartosz, G. (2000) 2,7-dichlorofluorescin oxidation and reactive oxygen species: what does it measure? Cell Biol Int 24, 757-60.
Jesaitis, A.J. (1995) Structure of human phagocyte cytochrome b and its relationship to microbicidal superoxide production. J Immunol 155, 3286-8.
Kaplan, M.H. and Volanakis, J.E. (1974) Interaction of C-reactive protein complexes with the complement system. I. Consumption of human complement associated with the reaction of C-reactive protein with pneumococcal C-polysaccharide and with the choline phosphatides, lecithin and sphingomyelin. J Immunol 112, 2135-47.
Khan, A.U. and Wilson, T. (1995) Reactive oxygen species as cellular messengers. Chem Biol 2, 437-45.
Kilpatrick, J.M., Gresham, H.D., Griffin, F.M., Jr. and Volanakis, J.E. (1987) Peripheral blood mononuclear leukocytes release a mediator(s) that induces phagocytosis of C-reactive protein-coated cells by polymorphonuclear leukocytes. J Leukoc Biol 41, 150-5.
Koshkin, V. and Pick, E. (1993) Generation of superoxide by purified and relipidated cytochrome b559 in the absence of cytosolic activators. FEBS Lett 327, 57-62.
Laragione, T., Bonetto, V., Casoni, F., Massignan, T., Bianchi, G., Gianazza, E. and Ghezzi, P. (2003) Redox regulation of surface protein thiols: identification of integrin alpha-4 as a molecular target by using redox proteomics. Proc Natl Acad Sci U S A 100, 14737-41.
Lundqvist, H., Karlsson, A., Follin, P., Sjolin, C. and Dahlgren, C. (1992) Phagocytosis following translocation of the neutrophil b-cytochrome from the specific granule to the plasma membrane is associated with an increased leakage of reactive oxygen species. Scand J Immunol 36, 885-91.
Marnell, L.L., Mold, C., Volzer, M.A., Burlingame, R.W. and Du Clos, T.W. (1995) C-reactive protein binds to Fc gamma RI in transfected COS cells. J Immunol 155, 2185-93.
McColl, S.R., Beauseigle, D., Gilbert, C. and Naccache, P.H. (1990) Priming of the human neutrophil respiratory burst by granulocyte-macrophage colony-stimulating factor and tumor necrosis factor-alpha involves regulation at a post-cell surface receptor level. Enhancement of the effect of agents which directly activate G proteins. J Immunol 145, 3047-53.
McCord, J.M. and Fridovich, I. (1969) Superoxide dismutase. An enzymic function for erythrocuprein (hemocuprein). J Biol Chem 244, 6049-55.
McLeish, K.R., Knall, C., Ward, R.A., Gerwins, P., Coxon, P.Y., Klein, J.B. and Johnson, G.L. (1998) Activation of mitogen-activated protein kinase cascades during priming of human neutrophils by TNF-alpha and GM-CSF. J Leukoc Biol 64, 537-45.
McPhail, L.C., Clayton, C.C. and Snyderman, R. (1984) The NADPH oxidase of human polymorphonuclear leukocytes. Evidence for regulation by multiple signals. J Biol Chem 259, 5768-75.
Mittal, C.K. and Murad, F. (1977) Activation of guanylate cyclase by superoxide dismutase and hydroxyl radical: a physiological regulator of guanosine 3',5'-monophosphate formation. Proc Natl Acad Sci U S A 74, 4360-4.
Mold, C., Gewurz, H. and Du Clos, T.W. (1999) Regulation of complement activation by C-reactive protein. Immunopharmacology 42, 23-30.
Mortensen, R.F. and Zhong, W. (2000) Regulation of phagocytic leukocyte activities by C-reactive protein. J Leukoc Biol 67, 495-500.
Moynagh, P.N., Williams, D.C. and O'Neill, L.A. (1994) Activation of NF-kappa B and induction of vascular cell adhesion molecule-1 and intracellular adhesion molecule-1 expression in human glial cells by IL-1. Modulation by antioxidants. J Immunol 153, 2681-90.
Nakamura, M., Murakami, M., Koga, T., Tanaka, Y. and Minakami, S. (1987) Monoclonal antibody 7D5 raised to cytochrome b558 of human neutrophils: immunocytochemical detection of the antigen in peripheral phagocytes of normal subjects, patients with chronic granulomatous disease, and their carrier mothers. Blood 69, 1404-8.
Newburger, P.E., Robinson, J.M., Pryzwansky, K.B., Rosoff, P.M., Greenberger, J.S. and Tauber, A.I. (1983) Human neutrophil dysfunction with giant granules and defective activation of the respiratory burst. Blood 61, 1247-57.
Nick, J.A., Avdi, N.J., Gerwins, P., Johnson, G.L. and Worthen, G.S. (1996) Activation of a p38 mitogen-activated protein kinase in human neutrophils by lipopolysaccharide. J Immunol 156, 4867-75.
Ohno, Y., Seligmann, B.E. and Gallin, J.I. (1985) Cytochrome b translocation to human neutrophil plasma membranes and superoxide release. Differential effects of N-formylmethionylleucylphenylalanine, phorbol myristate acetate, and A23187. J Biol Chem 260, 2409-14.
Oksvold, M.P., Skarpen, E., Widerberg, J. and Huitfeldt, H.S. (2002) Fluorescent histochemical techniques for analysis of intracellular signaling. J Histochem Cytochem 50, 289-303.
Pepys, M.B. and Baltz, M.L. (1983) Acute phase proteins with special reference to C-reactive protein and related proteins (pentaxins) and serum amyloid A protein. Adv Immunol 34, 141-212.
Pepys, M.B. and Hirschfield, G.M. (2003) C-reactive protein: a critical update. J Clin Invest 111, 1805-12.
Prasad, K. (2004) C-reactive protein increases oxygen radical generation by neutrophils. J Cardiovasc Pharmacol Ther 9, 203-9.
Pue, C.A., Mortensen, R.F., Marsh, C.B., Pope, H.A. and Wewers, M.D. (1996) Acute phase levels of C-reactive protein enhance IL-1 beta and IL-1ra production by human blood monocytes but inhibit IL-1 beta and IL-1ra production by alveolar macrophages. J Immunol 156, 1594-600.
Ridker, P.M., Hennekens, C.H., Buring, J.E. and Rifai, N. (2000) C-reactive protein and other markers of inflammation in the prediction of cardiovascular disease in women. N Engl J Med 342, 836-43.
Sbarra, A.J. and Karnovsky, M.L. (1959) The biochemical basis of phagocytosis. I. Metabolic changes during the ingestion of particles by polymorphonuclear leukocytes. J Biol Chem 234, 1355-62.
Schreck, R., Rieber, P. and Baeuerle, P.A. (1991) Reactive oxygen intermediates as apparently widely used messengers in the activation of the NF-kappa B transcription factor and HIV-1. Embo J 10, 2247-58.
Selvaraj, R.J. and Sbarra, A.J. (1966) Relationship of glycolytic and oxidative metabolism to particle entry and destruction in phagocytosing cells. Nature 211, 1272-6.
Sheppard, F.R., Kelher, M.R., Moore, E.E., McLaughlin, N.J., Banerjee, A. and Silliman, C.C. (2005a) Structural organization of the neutrophil NADPH oxidase: phosphorylation and translocation during priming and activation. J Leukoc Biol 78, 1025-42.
Sheppard, F.R., Moore, E.E., McLaughlin, N., Kelher, M., Johnson, J.L. and Silliman, C.C. (2005b) Clinically relevant osmolar stress inhibits priming-induced PMN NADPH oxidase subunit translocation. J Trauma 58, 752-7; discussion 757.
Shimizu, T., Kodama, R., Tsunawaki, S. and Takeda, K. (2002) GM-CSF induces expression of gp91phox and stimulates retinoic acid-induced p47phox expression in human myeloblastic leukemia cells. Eur J Haematol 68, 382-8.
Shine, B., de Beer, F.C. and Pepys, M.B. (1981) Solid phase radioimmunoassays for human C-reactive protein. Clin Chim Acta 117, 13-23.
Silliman, C.C., Ambruso, D.R. and Boshkov, L.K. (2005) Transfusion-related acute lung injury. Blood 105, 2266-73.
Sullivan, G.W., Carper, H.T. and Mandell, G.L. (1993) The effect of three human recombinant hematopoietic growth factors (granulocyte-macrophage colony-stimulating factor, granulocyte colony-stimulating factor, and interleukin-3) on phagocyte oxidative activity. Blood 81, 1863-70.
Vallyathan, V. and Shi, X. (1997) The role of oxygen free radicals in occupational and environmental lung diseases. Environ Health Perspect 105 Suppl 1, 165-77.
Van Dyke, K., Patel, S. and Vallyathan, V. (2003) Lucigenin chemiluminescence assay as an adjunctive tool for assessment of various stages of inflammation: a study of quiescent inflammatory cells. J Biosci 28, 115-9.
Vignais, P.V. (2002) The superoxide-generating NADPH oxidase: structural aspects and activation mechanism. Cell Mol Life Sci 59, 1428-59.
Volanakis, J.E. (1982) Complement activation by C-reactive protein complexes. Ann N Y Acad Sci 389, 235-50.
Vosbeck, K., Tobias, P., Mueller, H., Allen, R.A., Arfors, K.E., Ulevitch, R.J. and Sklar, L.A. (1990) Priming of polymorphonuclear granulocytes by lipopolysaccharides and its complexes with lipopolysaccharide binding protein and high density lipoprotein. J Leukoc Biol 47, 97-104.
Vowells, S.J., Sekhsaria, S., Malech, H.L., Shalit, M. and Fleisher, T.A. (1995) Flow cytometric analysis of the granulocyte respiratory burst: a comparison study of fluorescent probes. J Immunol Methods 178, 89-97.
Ward, R.A., Nakamura, M. and McLeish, K.R. (2000) Priming of the neutrophil respiratory burst involves p38 mitogen-activated protein kinase-dependent exocytosis of flavocytochrome b558-containing granules. J Biol Chem 275, 36713-9.
White, A.A., Crawford, K.M., Patt, C.S. and Lad, P.J. (1976) Activation of soluble guanylate cyclase from rat lung by incubation or by hydrogen peroxide. J Biol Chem 251, 7304-12.
Woodman, R.C., Ruedi, J.M., Jesaitis, A.J., Okamura, N., Quinn, M.T., Smith, R.M., Curnutte, J.T. and Babior, B.M. (1991) Respiratory burst oxidase and three of four oxidase-related polypeptides are associated with the cytoskeleton of human neutrophils. J Clin Invest 87, 1345-51.
Wyman, T.H., Dinarello, C.A., Banerjee, A., Gamboni-Robertson, F., Hiester, A.A., England, K.M., Kelher, M. and Silliman, C.C. (2002) Physiological levels of interleukin-18 stimulate multiple neutrophil functions through p38 MAP kinase activation. J Leukoc Biol 72, 401-9.
Zeller, J.M. and Sullivan, B.L. (1992) C-reactive protein selectively enhances the intracellular generation of reactive oxygen products by IgG-stimulated monocytes and neutrophils. J Leukoc Biol 52, 449-55.